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1. Introduction to Human Action
Recognition in Videos



Human action recognition in RGB-D videos

e A human action can be defined as a spatio-temporal sequence of human body
movements that has starting and ending temporal points.

e The main goal of a video-based action recognition system is to automatically
analyze ongoing video streams provided by unknown cameras to determine which
human actions occur in these videos.

e In computer vision, human action recognition is an automatic labelling process that
attempts to label each action with a corresponding name (verb or noun).

Figure 1: Human action recognition systems usually focus on recognizing daily-life actions.



Motivation

Human action recognition in videos plays a key role in many different intelligent video
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Figu re 2: (a) Recognizing actions in intelligent transport systems; (b) stealing detection; (c)
remote monitoring service for elderly persons; (d) pedestrian path prediction in self-driving cars;
(e) action recognition in the entertainment industry; and (f) action localization in sports videos.



Research challenges

e large intra-class variations
e Fuzzy boundaries between classes

e Viewpoint variations, camera motion, etc.

Using computer

Raising hands

Figu re 3: The large intra-class variation and the variety in camera views are two enormous

challenges in recognizing human actions.



Research problem and objective

Research problems

® How to recognize correctly what humans do in unknown videos?

e How to learn efficiently spatio-temporal features of human motions by deep

convolutional neural networks (D-CNNs)?

e How to build an efficient deep learning framework (i.e. higher prediction
performance and faster prediction speed) for human action recognition from RGB-D

data?



Human action recognition in RGB-D videos

Objective

Developing and validating a deep learning-based approach to analyse human

behaviors from RGB-D sequences. Application to public transport monitoring.

Figu re 4: Detecting abnormal behaviors on video surveillance in public transport.



2. State-of-the-Art in
Video-based Human Action
Recognition



State-of-the-art in Video-based Human Action Recognition

Literature review

Before 2015, traditional approaches for human action recognition in videos are often

based on hand-crafted features — usually leads to data dependent methods.

Human Detection & Feature Extraction & ; .
‘ Input Sequence ’—}{ Segmematlon ’—)‘ Represenlatlon }—}‘ Action Recogntion
‘V .
~
~

?
>

~
~

2 :

. .
[ AN
| R

ﬂ I .. ...

s

Figure 5: Atypical method for video-based human action recognition.



State-of-the-art in Video-based Human Action Recognition

Literature review
Starting from 2015, deep learning-based approaches became a new state-of-the-art in
the human action recognition”.
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Figure 6: Hand-crafted feature vs. deep learning on the NTU-RGB+D dataset. The traditional

approaches are marked with circles, deep learning based approaches are marked with squares.

Huy-Hieu Pham, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio A. Velastin, “Exploiting deep residual networks for human action

recognition from skeletal data” - CVIU 2018.



State-of-the-art in Video-based Human Action Recognition

Literature review

Several important deep learning-based architectures for human action recognition

Architecture 1: 3D Convolutional Neural Network (3D-CNN)?2.
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Figure 7: A 3D CNN architecture for human action recognition in which 3D convolutions in the

Full connection

convolution stages of CNNs to compute features from both spatial and temporal dimensions.

2Ji, Shuiwang et al. “3D convolutional neural networks for human action recognition”. TPAMI, vol.
35, pp. 221-231, 20715.



State-of-the-art in Video-based Human Action Recognition

Literature review
Several important deep learning-based architectures for human action recognition
Architecture 2: Two-stream CNNZ.

Spatial stream ConvNet
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Figure 8: Two-stream CNN framework for human action recognition in videos.

3Karen Simonyan and Andrew Zisserman. “Two-stream convolutional networks for action
recognition in videos”. In: NIPS, 2014.



State-of-the-art in Video-based Human Action Recognition

Limitations of previous works and the focus of our study.

For every 256 x 256 color image, there are
3 x 256 x 256 ~ 200k values that have to
be stored for computation.

RGB image

‘.
M. ‘ .
12 ‘ Meanwhile, each skeleton frame with
#;‘ 25 key-points just has 3 x 25 = 75 values.
/" e
‘e
3D skeleton

Figure 9: pimensionality of data: A comparison between RGB data and skeletal data.
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3. ANew Deep Learning
Framework for Action
Recognition from Skeleton
Sequences



Proposed method

Approach 1: Building a skeleton-based action recognition method
using deep neural networks

The proposed method is based on two key ideas:

e Encoding each skeleton sequence into a single color image (called “action maps”).

e Training state-of-the-art CNN models to learn and classify the action maps.



Proposed method

Motivations

e Human actions can be correctly represented through the skeleton movements.

e The spatio—-temporal dynamics of skeleton sequences can be transformed into color
images, which can be effectively learned by representation learning models such as
D-CNNs.

e Training deep learning models on skeletal data is much faster than training on RGB
and depth streams.

e Recent research results indicate that CNNs have achieved outstanding performances
in many image recognition tasks.



Proposed method

Approach 1: A two-step learning method for skeleton-based human
action recognition with deep convolutional neural networks

Step 1: Encoding skeleton sequences into color images.
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Figure 10: Illustration of the color encoding process.

e Using a transformation function to rescale the joint coordinates into [0, 255].

e Concatenating all transformed skeleton frames over time.
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Proposed method

Approach 1: A two-step learning method for skeleton-based human
action recognition with deep convolutional neural networks

Step 1: Encoding skeleton sequences into color images.

e
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Figure 11: Arranging pixels in color images according to the human body physical structure. This
helps to keep the local motion characteristics and to generate more discriminative features in

image-based representations.



Proposed method

Approach 1: A two-step learning method for skeleton-based human
action recognition with deep convolutional neural networks

Step 1: Encoding skeleton sequences into color images.

DrawX Forward kick Hand catch
High throw Jogging Two hand wave

Figure 12: Output of the encoding process obtained from some samples of the MSR Action3D

dataset.
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Proposed method

Approach 1: A two-step learning method for skeleton-based human
action recognition with deep convolutional neural networks

Step 2: Designing and training D-CNNSs to learn and classify actions via the

color-coded representation.

Jogging

Action #1

Forward kick

Action #2

Input
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Output
— Action label

Action #3
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Figure 13: Human action recognition using D-CNNs and the proposed skeleton-based

representation.



Proposed method

Network design

ResNet* has designed and trained for recognition task. The presence of an identity

function id(x) helps ResNet to prevent overfitting and degradation phenomena.

Weight Layer W A shortcut path for gradient to flow through

vy | ReLu
Weight Layer Weight Layer

RelU f
Weight Layer
RelU

!
(o= RelU (Far) +21))

B The higher layer will perform at least as good
as the lower layer, and not worse

Figure 14: information flow executed by a traditional CNN (left) and by a ResNet unit (right).

‘*He, Kaiming, et al. “Deep residual learning for image recognition.” CVPR, 2016.



Proposed method

Network design

Our design

Original ResNet New layer

N
( input ) Adding Batch Normalization
and Dropout layers to prevent
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Figure 15: A ResNet building unit that was proposed in the original paper (left). Our proposed
ResNet building (right). The symbol & denotes element-wise addition.
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Experiments

Datasets and settings: The proposed method was evaluated on three public datasets:
MSR Action3D®, KARD®, and NTU-RGB+D’.

e MSR Action3D dataset: 20 actions, 557 skeleton sequences. Three subsets: AS1, AS2,
and AS3.

e KARD dataset: 18 actions, 540 skeleton sequences. Three subsets: Action Set 1,
Action Set 2, and Action Set 3.

e NTU-RGB+D dataset: the largest RGB-D dataset currently available with 56,000+
videos, 60 action classes. Two evaluation settings: Cross-Subject and Cross-View.

3Li et al.. “Action recognition based on a bag of 3D points”. In CVPR, 2010.
6Gaglio et al. “Human activity recognition process using 3D posture data”. IEEE Trans. Hum.-Mach.

Syst. 2015.
’Shahroudy et al. “NTU-RGB+D: A large scale dataset for 3D human activity analysis” in CVPR, 2016.
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Proposed meth

Experiments

Training methodology

e All networks are designed for the acceptable images with the size of 32 x 32 pixels
as input features and classifying them into n categories corresponding to n action

classes in each dataset.
e Using a mini-batch of 128 samples.

e The learning rate starts from 0.01 for the first 75 epochs, 0.001 for the next 75 epochs
and 0.0001 for the remaining 50 epochs.

e Data augmentation techniques (i.e. random cropping, flipping) were used to reduce
overfitting.

21



Proposed method

Experimental results

Model Cross-Subject Cross-View

Original-ResNet-20 73.90% 80.80%
Original-ResNet-32 75.40% 81.60%
Original-ResNet-44 75.20% 81.50%
Original-ResNet-56 75.00% 81.50%
Original-ResNet-110 73.80% 80.00%
Proposed-ResNet-20 76.80% 83.80%
Proposed-ResNet-32 76.70% 84.70%
Proposed-ResNet-44 77.20% 84.80% our best model
Proposed-ResNet-56 78.20% 85.60%
Proposed-ResNet-110 78.00% 84.60%

Table 1: Results on the NTU-RGB+D dataset for Cross-Subject and Cross-View evaluations.

22



Proposed method

Experimental results

Method (protocol of Shahroudy et al., 2016) Cross-Subject Cross-View
HONA4D (Oreifej and Liu, 2017) 30.56% 7.26%
Super Normal Vector (Yang and Tian, 2011) 31.82% 13.61%
HOG? (Ohn-Bar and Trivedi, 20173) } 32.24% 22.27%
Skeletal Quads (Evangelidis, Singh, and Horaud, 7(114) | 38.62% 41.36%
Shuffle and Learn (Misra, Zitnick, and Hebert, 2016) 1 47 50% N/A
Key poses + SVM (Cippitelli et al., > ) | 48.90% N/A
Lie Group (Vemulapalli, Arrate, and Chellappa, 20714) J 50.08% 52.76%
HBRNN-L (Du, Wang, and Wang, 2015) | 59.07% 63.97%
FTP Dynamic Skeletons (Hu et al., 2 ) ‘ 60.23% 65.22%
P-LSTM (Shahroudy et al., 201¢) | 62.93% 70.27%
RNN Encoder-Decoder (Luo et al., 2017) ‘ 66.20% N/A
ST-LSTM (Liu et al., 70101) | 69.20% 77.7%
STA-LSTM (Song et al., 2017) } 73.40% 81.2%
Res-TCN (Kim and Reiter, 2017) | 74.30% 83.1%
DSSCA - SSLM (Shahroudy et al., 2017) J 74.86% N/A
Joint Distance Maps + CNN (Li etal., 20172) | 76.20% N/A%
‘Our best model (Proposed-ResNet-56) ‘ 78.20% 85.60%

Table 2: performance comparison of our proposed ResNet model with the state-of-the-art

methods on the NTU-RGB+D dataset. 23



Proposed method

Experimental results®

MSR3D KARD  NTU-RGB+D NTU-RGB+D
(overall) (overall) Cross-Subject Cross-View

Prior works | 9650%  99.31% 76.20% 83.10% Previous state-of-the-art recognition
Our results 9990%  99.98% 78.20% 85.60% performance that have been reported
Improvements | 3.40%  0.67% 2.00% 2.50% in the Literature.

Table 3: The best of our results compared to the best prior results on MSR Action3D, KARD, and
NTU-RGB+D datasets.

8This comparison was conducted at the end of 2017 and may not be complete at the
time being.
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Proposed method

There is still a lot of room for improvement.

Accuracy

/0

Better motion representation More robust learning model

25



Action recognition using deep networks

Approach 2: A new 3D motion representation for skeleton-based
human action recognition with deep convolutional neural networks.
Building a better skeleton-based representation called SPMF for human action

recognition in videos. Each action map contains two key components: Pose Features
(PF) and Motion Features (MF).

Original Input | SPMF
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i {\:y =\ \. I e 2|z g &'
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\"\/I \ E-] S
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: MFN l—)N
MFI—PZ _ _ _ _ - - _ _ _ - - = -
: Frames SPMF repr i Image pr Deep Neural Netwurks

Figure 16: Encoding a skeleton sequence into a single action map.
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Action recognition using deep networks

Pose Features (PF)

A concatenation operator

PF' = “JD.E(GB% JJOIRGB}

Pose Features (PF) The Joint-Joint Distance JJDJfR The Joint-Joint Orientation JJO},;
o UDfe = 1P} — Phll2 )0j, = P — Pne

\ \
JET Colormap

Frame t 0.0 0.2 0.4 o6 0.8
Figure 17: computing Pose Features (PF) from skeletons.

e The pose vector (PF) was computed from joint-joint distances and concatenated
with joint-joint orientations.

e The JET colormap was used to convert joint-joint distances to color points.
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Action recognition using deep networks

Motion Features (MF)

Motion Features (MF) MF L = [J]D%Hl #]]oiztggl]
1
& % IO = I i §O g
Framet Framet+1

Figure 18: Computing Motion Features (MF) from skeletons.

Arm wave Hammer Forward punch Forward kick Tennis serve

Figu re 19: The SPMFs obtained from some samples of the MSR Action3D dataset.

28



Action recognition using deep networks

Color enhancement

The Adaptive Histogram Equalization (AHE) algorithm was then used to highlight the
motion map and form the Enhanced-SPMF.

Arm wave Hammer Forward punch Forward kick Tennis serve
- - - - - o
Arm wave Hammer Forward punch Forward kick Tennis serve

[ T
5 E - - E B
P— JR———

Figure 20: The proposed Enhanced-SPMF representation for human action recognition from

skeleton sequences.
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Action recognition using deep networks

Learning model based on DenseNet’

DenseNet-16, DenseNet-28, DenseNet-40 were used for learning and recognition task
on the proposed Enhanced-SPMFs.

Enhanced-SPMF

Action #1
—
Re| eated
A dense block of DenseNe: AEE e E | p -
I ' K
Inj v '—-bu ot | I .
rm,.? | oo Action #... —| : - 5
— [ R i - SN L 32
Multiple Blocks DenseNet .
Action #C-1
T
Action #C [ =

Figure 21: The proposed Enhanced-SPMFs are fed into a DenseNet for classifying action maps.

9Huang, Gao, et al. “Densely Connected Convolutional Networks.” IEEE CVPR, 2017.
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Comparison with state-of-the-art

Method (protocol of [33]) Cross-Subject Cross-View
Lie Group [39] 50.10% 52.80%
Hierarchical RNN [6] 59.07% 63.97%
Dynamic Skeletons [13] 60.20% 65.20%
Two-Layer P-LSTM [33] 62.93% 70.27%
ST-LSTM Trust Gates [21] 69.20% 77.70%
Geometric Features [50] 70.26% 82.39%
Two-Stream RNN [40] 71.30% 79.50%
Enhanced Skeleton [24] 75.97% 82.56%
GCA-LSTM [22] 76.10% 84.00%
SPMF [27] 78.89% 86.15%
Enhanced-SPMF DenseNet-16 (ours) 77.89% 86.55%
Ours —»
Enhanced-SPMF DenseNet-28 (ours) 79.07% 86.82%
Enhanced-SPMF DenseNet-40 (ours) 79.95% 87.52%

Table 4: Recognition accuracy on the large-scale NTU-RGB+D dataset.

e State-of-the-art accuracy on four challenging datasets: MSR Action3D, KARD, SBU
Interaction and NTU-RGB+D.

e Less computation for training and inference.

31



Result of the proposed combinations

The proposed method is able to obtain a high-level of performance
due to:

e New action representations that are suitable for the problem of human action
recognition.

e Using state-of-the-art deep learning models for the classification task.

e A good training procedure and optimization.

Model Input MSR Action3D KARD SBU Kinect NTU-RGB+D NTU-RGB+D
(overall) (overall) (overall) (cross-subject) (cross-view)
ResNet-44 Image-coded 99.90% 99.98% N/A 77.20% 84.80%
Inception-ResNet-222 SPMF 98.56% N/A N/A 78.89% 86.15%
DenseNet Enhanced-SPMF 99.10% N/A 96.67% 80.11% 86.82%

Table 5: summary of the proposed models (architecture + representation) and their

experimental results on all datasets.
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SPMF vs Enhanced-SPMF: A comparison

Setting

Training DenseNet on the SPMFs and Enhanced-SPMFs provided by the SBU dataset
using the same training methodology (e.g. learning rate, batch size, optimizer.).

Training on SPMFs Training on Enhanced-SPMFs
12 12-
= Training Loss, min = 0.101712 = Training Loss. min = 0.092291
—— Test Accuracy, max = 92.58 (%) —— Test Accuracy, max = 96.67 (%)
1.0 10
e Performance curve
Performance curve
08 0.8 -
0.6 0.6
04 0.4 -
Training loss ini
0 g 02 Training loss
00 - 0 i i ' 0.0 . . i ' .
o 50 100 150 200 250 300 o 50 100 150 200 250 300
Number of epochs Number of epochs

Figure 22: Test accuracy of the proposed DenseNet on SPMFs (left - 92.58%) and on
Enhanced-SPMFs (right - 96.67%).
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Computational efficiency

Computational efficiency evaluation

One action skeleton sequence

Frame 1 Frame2 Frame N-1 Frame N

.

oot
By 4'{1:’- Iﬁ ——3 Sup\
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OGN noat \
Stage 1

Encoding the 3D joint coordinates into RGB images.

.
e

%

L —

Action prediction
Unknown skeleton sequence
Frame 1 Frame 2 Frame N-1 Frame N
Encoding the 3D joint
.- coordinates into RGB images.

Component Average processing time

Stage 1 7.83 x 10~3s per sequence (Intel Core i7 3.2GHz CPU)
Stage 2 1.27 x 10~ 3s per sequence (GTX 1080 Ti GPU)

Stage 3 8.31 x 1035 per sequence (GTX 1080 Ti GPU)

Figure 23: Three main stages of the proposed deep learning framework for recognizing human

actions from skeleton sequences. The inference stage, including the stage (1) that is executed on a

CPU and the stage (3), takes an average of 8.31 x 10™>s per sequence without parallel processing.



CEMEST-Tisséo dataset

e A new real-wold surveillance dataset containing both normal and anomalous events
for studying human behaviors in public transport.

e 203 video samples containing RGB videos, depth map sequences, and 3D skeletal
data.

e Three action classes: crossing (franchir) normally over the barriers, jumping (sauter)
over the ticket barriers, and sneaking (se faufiler) under the ticket barriers.

Figure 24: Some samples from the CEMEST-Tisséo dataset. 35



CEMEST-Tisséo dataset

Experimental results

® \We achieved an accuracy of 91% with the DenseNet-40 when training from scratch.

e We reached an accuracy of 95% with transfer learning, increasing the performance

by more than 4% compared to the first setting.

Training from scratch on CEMEST-Tisséo

Training Loss, min = 0.016795
—— Test Accuracy, max = 91.18 (%)

08 Perfermance curve

Training loss

0 50 100 150
Number of epochs

250

Using transfer learning

—— Training Loss. min = 0.004199
—— Test Accuracy. max = 95.7 (%)

Performance curve

Training loss

0 50 100 1

s0
Number of epochs

200 250

Figu re 25: Learning curves of DenseNet-40 trained on the CEMEST-Tisséo dataset.
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4. A Unified Deep Learning
Framework for 3D Pose
Estimation and Action
Recognition from RGB Videos



A unified deep learning framework for 3D pose estimation

and action recognition from RGB videos

Objective: Learning for 3D human pose estimation from a single RGB
image using deep neural networks.

e Using a state-of-the-art 2D pose estimator (e.g. OpenPose) to obtain 2D human
poses from RGB image sequences.

e Building a deep learning network for learning and estimating 3D human poses from
2D poses.

Given an input RGB image | € RW*Hx3_ Denoting 2D keypoints as p,p, € R?*N and the
estimated 3D pose as p;p € R3*M. A neural network can be trained to produce

[33D :f(pZDve)v (1

in a supervised manner, where 6 is a set of trainable parameters of the function f.
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A unified deep learning framework for 3D pose estimation

and action recognition from RGB videos

Objective: Learning for 3D human pose estimation from a single RGB
image using deep neural networks.

Supervised learning with 3D ground truth

Annotation ?\ i N N
" 2 - B |3 N | :
) Ground truth 2D locations
\ Identity connections
£ 5| g g
RGB input o — A R R Sl R R - R
OpenPose (Y o & & &

OpenPose 2C detections

3D human pose

SEW

Figure 26: Diagram of the proposed two-stream network for training our 3D pose estimator.
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A unified deep learning framework for 3D pose estimation

and action recognition from RGB videos

QR

PR S

2D Pose 3D Pose (GT) 3D Prediction

Figure 27: visualization of 3D output of the proposed estimation algorithm.
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A unified deep learning framework for 3D pose estimation

and action recognition from RGB videos

2D poses 3D poses (ground truth) 3D poses (prediction) 2D poses 3D poses (ground truth) 3D poses (prediction)

S (O I S
1% &4 P 9
T T IO T A

Figu re 28: Vvisualization of 3D output of the estimation algorithm with many different human

poses from the test set of Human3.6M.
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A unified deep learning framework for 3D pose estimation

and action recognition from RGB videos

Experimental result on Human3.6M dataset

Method Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD  Smoke Wait WalkDWalk WalkT Avg

Ionescu et al., & 132.7 183.6 1323 1644 1621 2059 1506 1713 1516 243.0 1621 1707 1771 96.6 1279 162.1
Duetal, * 851 1127 1049 1221 139.1 1359 1059 1662 1175 2269 120.0 117.7 1374 993 1065 1265
Tekin etal., 1024 1472 888 1253 118.0 1827 1124 1292 1389 2249 1184 1388 1263 551 658 1250

Park, Hwang, and Kwak, * 100.3 1162 90.0 1165 1153 1495 117.6 1069 1372 190.8 1058 1251 1319 626 962 117.3

Zhou et al., * 874 1093 871 1032 1162 1433 1069 998 1245 1992 1074 1181 1142 794 977 113.0
Xingyi et al., * 918 1024 967 988 1134 1252 90.0 938 1322 1590 107.0 944 1260 79.0 99.0 1073
Pavlakos etal., 674 719 667 691 720 770 650 683 837 965 717 658 749 591 632 719
Mehta et al., = 674 719 667 691 719 650 683 837 1200 66.0 798 639 489 768 537 686
Martinez et al., * 518 562 581 590 695 552 581 740 946 623 784 591 495 651 524 629
Shuang, Xiao, and Yichen, 528 542 543 618 531 536 717 867 615 534 672 548 534 471 616 591
Luvizon, Picard, and Tabia, 49.2 516 476 505 51.8 485 517 615 709 537 603 489 444 579 489 53.2
Martinez et al., rt 37.7 444 403 421 482 549 444 421 546 580 451 464 476 364 404 455
Ours 36.6 432 381 408 444 518 437 384 508 52.0 421 422 440 323 359 424

Figu re 29: Experimental results and comparison with previous state-of-the-art 3D pose
estimation approaches on the Human3.6M dataset. Results are reported by the average error in

millimeters between the ground truth and the corresponding predictions over all joints.
41



A unified deep learning framework for 3D pose estimation

and action recognition from RGB videos

Enhanced-SPMF

t=T
RGB Images 2D Generated Poses 3D Estimated Poses

Estimation stage Recognition stage
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Figure 30: Overview of our method for 3D pose estimation and action recognition from RGB
videos. In the recognition stage, the 3D estimated poses were encoded via Enhanced-SPMF and
finally fed into a CNN for supervised classification, which is automatically searched by the Efficient

Neural Architecture Search (ENAS) algorithm.
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A unified deep learning framework for 3D pose estimation

and action recognition from RGB videos

Experimental results

MSR Action3D SBU Kinect Interaction
Method AS1 AS2 AS3 Aver. Method Accuracy (%)

Li, Zhang, and Liu, 2 72.90 71.90 71.90 74.70 Song et al., 2017 91.51

Chen, Liu, and Kehtarnavaz, 96.20 8320  92.00 90.47 Liuetal, 93.30

Vemulapalli, Arrate, and Chellappa, 95.29 83.87 9822 92.46 Weng etal., 93.30

Du, Wang, and Wang, 99.33 94.64 95.50 94.49 Keetal., 2017 93.57

Liuetal, N/A N/A N/A 94.80 Tas and Koniusz, 94.36

Wang et al., > 93.60 9550  95.10 94.80 Wang and Wang, 94.80

Weng, Weng, and Yuan, 91.50 95.60 97.30 94.80 Liuetal, 2 94.90

Xuetal, 99.10 9290  96.40 96.10 Zhang etal., (using VA-RNN) 95.70

Leeetal, 2017 95.24 96.43 100.0 97.22 Zhang etal., 2019 (using VA-CNN) 97.50

Enhanced-SPMF DenseNet (L=250, k=24) 98.83 99.06 99.40 99.10 Enhanced-SPMF DenseNet (L=250,k=24) 97.86
Proposed method 97.87 9681 9927  97.98 Proposed method 9630 | OUs

Table 6: Test accuracies (%) on the MSR Action3D et SBU Kinect Interaction datasets.
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5. Conclusion and Perspectives



Contributio

In general, the main contributions of this thesis include:

e Propose, develop and validate different deep learning-based approaches for
determining which human actions occur from monocular RGB-D video sequences.

e Review the most prominent state-of-the-art deep learning algorithms applied to the
recognition of human actions in videos.

e A new deep learning approach for human action recognition by encoding skeleton
sequences into color images.

e Two new 3D skeleton-based representations, namely SPMF and Enhanced-SPMF.

e A new deep learning architecture for estimating 3D human poses from RGB
images/videos.

e Collect a new RGB-D dataset called CEMEST-Tisséo for analysing passenger
behaviors in public transport. The dataset was opened for research purposes.

e Contribute to 6 publications in international journals (CVIU 2018, IET Computer
Vision 2019, Intelligent Sensors 2019) and conferences (ICPRS 2017, IEEE ICIP 2018, ICIAR
2019) and two preprints.
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Limitations

e Lack of evaluation of the proposed 3D pose estimation method on the
CEMEST-Tisséo dataset.

e Invalid or missing data of local fragments in the input sequences may lead to drop
in the recognition rate.

e Recognizing human actions on continuous video streams.
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Figure 371: How to determine the starting point and the ending point of an action?
45



Perspectives

e Recurrent Neural Networks with Long Short-Term Memory units
e Graph Convolutional Networks

e Temporal Convolutional Networks

e Attention Temporal Networks

e Multi-Stream Deep Neural Networks
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Figu re 32: Atwo-stream deep neural network for parallel learning pose and motion features.
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Thank you for your attention!
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