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Stéphane CANU et Michèle GOUIFFÈS
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Résumé
Doctorat

Architectures d’apprentissage profond pour la reconnaissance d’actions
humaines dans des séquences vidéo RGB-D monoculaires. Application à la

surveillance dans les transports publics.

par Huy Hieu PHAM

Cette thèse porte sur la reconnaissance d’actions humaines dans des séquences vidéo
RGB-D monoculaires. La question principale est, à partir d’une vidéo ou d’une
séquence d’images donnée, de savoir comment reconnaître des actions particulières
qui se produisent. Cette tâche est importante et est un défi majeur à cause d’un cer-
tain nombre de verrous scientifiques induits par la variabilité des conditions d’acqui-
sition, comme l’éclairage, la position, l’orientation et le champ de vue de la caméra,
ainsi que par la variabilité de la réalisation des actions, notamment de leur vitesse
d’exécution. Pour surmonter certaines de ces difficultés, dans un premier temps,
nous examinons et évaluons les techniques les plus récentes pour la reconnaissance
d’actions dans des vidéos. Nous proposons ensuite une nouvelle approche basée
sur des réseaux de neurones profonds pour la reconnaissance d’actions humaines
à partir de séquences de squelettes 3D. Deux questions clés ont été traitées. Tout
d’abord, comment représenter la dynamique spatio-temporelle d’une séquence de
squelettes pour exploiter efficacement la capacité d’apprentissage des représenta-
tions de haut niveau des réseaux de neurones convolutifs (CNNs ou ConvNets).
Ensuite, comment concevoir une architecture de CNN capable d’apprendre des car-
actéristiques spatio-temporelles discriminantes à partir de la représentation pro-
posée dans un objectif de classification. Pour cela, nous introduisons deux nouvelles
représentations du mouvement 3D basées sur des squelettes, appelées SPMF (Skele-
ton Posture-Motion Feature) et Enhanced-SPMF, qui encodent les postures et les
mouvements humains extraits des séquences de squelettes sous la forme d’images
couleur RGB. Pour les tâches d’apprentissage et de classification, nous proposons
différentes architectures de CNNs, qui sont basées sur les modèles Residual Net-
work (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network
(DenseNet) et Efficient Neural Architecture Search (ENAS), pour extraire des carac-
téristiques robustes de la représentation sous forme d’image que nous proposons et
pour les classer. Les résultats expérimentaux sur des bases de données publiques
(MSR Action3D, Kinect Activity Recognition Dataset, SBU Kinect Interaction, et
NTU-RGB+D) montrent que notre approche surpasse les méthodes de l’état de l’art.

Nous proposons également une nouvelle technique pour l’estimation de postures
humaines à partir d’une vidéo RGB. Pour cela, le modèle d’apprentissage profond
appelé OpenPose est utilisé pour détecter les personnes et extraire leur posture en
2D. Un réseau de neurones profond est ensuite proposé pour apprendre la trans-
formation permettant de reconstruire ces postures en trois dimensions. Les résul-
tats expérimentaux sur la base de données Human3.6M montrent l’efficacité de la
méthode proposée. Ces résultats ouvrent des perspectives pour une approche de
la reconnaissance d’actions humaines à partir des séquences de squelettes 3D sans
utiliser des capteurs de profondeur comme la Kinect.

Nous avons également constitué la base CEMEST, une nouvelle base de données
RGB-D illustrant des comportements de passagers dans les transports publics. Elle

http://www.univ-tlse3.fr/
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contient 203 vidéos de surveillance collectées dans une station du métro incluant
des événements « normaux » et « anormaux ». Nous avons obtenu des résultats
prometteurs sur cette base en utilisant des techniques d’augmentation de données
et de transfert d’apprentissage. Notre approche permet de concevoir des applica-
tions basées sur des techniques de l’apprentissage profond pour renforcer la qualité
des services de transport en commun.

Mots clés : reconnaissance d’actions humaines, réseaux de neurones convolutifs,
recherche d’architecture neuronale, squelettes, capteur de profondeur.
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Abstract
Doctor of Philosophy

Deep learning architectures for human action recognition from monocular
RGB-D video sequences. Application to public transport monitoring.

by Huy Hieu PHAM

This thesis is dealing with automatic recognition of human actions from monocu-
lar RGB-D video sequences. Our main goal is to recognize which human actions
occur in unknown videos. This problem is a challenging task due to a number of
obstacles caused by the variability of the acquisition conditions, including the light-
ing, the position, the orientation and the field of view of the camera, as well as the
variability of actions which can be performed differently, notably in terms of speed.
To tackle these problems, we first review and evaluate the most prominent state-
of-the-art techniques to identify the current state of human action recognition in
videos. We then propose a new approach for skeleton-based action recognition us-
ing Deep Neural Networks (DNNs). Two key questions have been addressed. First,
how to efficiently represent the spatio-temporal patterns of skeletal data for fully
exploiting the capacity in learning high-level representations of Deep Convolutional
Neural Networks (D-CNNs). Second, how to design a powerful D-CNN architec-
ture that is able to learn discriminative features from the proposed representation
for classification task. As a result, we introduce two new 3D motion representations
called SPMF (Skeleton Posture-Motion Feature) and Enhanced-SPMF that encode
skeleton poses and their motions into color images. For learning and classification
tasks, we design and train different D-CNN architectures based on the Residual Net-
work (ResNet), Inception-ResNet-v2, Densely Connected Convolutional Network
(DenseNet) and Efficient Neural Architecture Search (ENAS) to extract robust fea-
tures from color–coded images and classify them. Experimental results on various
public and challenging human action recognition datasets (MSR Action3D, Kinect
Activity Recognition Dataset, SBU Kinect Interaction, and NTU-RGB+D) show that
the proposed approach outperforms current state-of-the-art.

We also conducted research on the problem of 3D human pose estimation from
monocular RGB video sequences and exploited the estimated 3D poses for recog-
nition task. Specifically, a deep learning-based model called OpenPose is deployed
to detect 2D human poses. A DNN is then proposed and trained for learning a
2D-to-3D mapping in order to map the detected 2D keypoints into 3D poses. Our
experiments on the Human3.6M dataset verified the effectiveness of the proposed
method. These obtained results allow opening a new research direction for human
action recognition from 3D skeletal data, when the depth cameras are failing.

In addition, we collect and introduce in this thesis, CEMEST database, a new
RGB-D dataset depicting passengers’ behaviors in public transport. It consists of
203 untrimmed real-world surveillance videos of realistic “normal” and “abnormal”
events. We achieve promising results on CEMEST with the support of data augmen-
tation and transfer learning techniques. This enables the construction of real-world
applications based on deep learning for enhancing public transportation manage-
ment services.

http://www.univ-tlse3.fr/
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Keywords: human action recognition, convolutional neural networks, neural archi-
tecture search, skeletal data, depth sensor.
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Chapter overview: In this chapter, we introduce the topic of this PhD thesis, human action
recognition from monocular RGB-D video sequences (Section 1.1). Then, we present the im-
portant role of the recognition of human actions in building various real-life applications
(Section 1.2). In particular, we discuss the current trends, new challenges and interests re-
lated to this research topic (Section 1.3). After that, the problem statement and its scope as
well as our main contributions are presented (Section 1.4 & Section 1.5). Finally, we close the
chapter by the thesis structure (Section 1.6).

1.1 Human action recognition in videos

Human action recognition in videos plays a prominent role in many different intelligent
video analysis systems. The main goal of video-based human action recognition is to au-
tomatically analyze ongoing video streams provided by unknown cameras to detect and
determine which human actions occur in these videos. An action can be defined as a spatio-
temporal sequence of human body movements that has starting and ending temporal points.
According to computer vision field, given an input video that contains one or several ac-
tions, human action recognition attempts to label each action with its corresponding name.
In other words, this is an automatic labelling process in which each action occurring in video
is described by a suitable verb or noun.

FIGURE 1.1: Early studies on human action recognition were motivated by human repre-
sentations in arts. For example, this picture describes a man going upstairs or up a ladder
that was drawn by Leonardo da Vinci (1452–1519) in the 15th century (Ivan, 2012).
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Early studies on human action recognition were motivated by human representations in
arts, biomechanics, motion perception (Ivan, 2012) and then expanded into so many mod-
ern applications in computer vision as nowadays (Ranasinghe, Al Machot, and Mayr, 2016).
For the time being, human action recognition is one of the key techniques in building many
intelligent systems involving video surveillance, human-machine interaction, self-driving
cars, robot vision and so on. Although significant progress has been made over the past
two decades, developing a fast and accurate action recognition framework is still a challeng-
ing task due to many obstacles such as viewpoint, occlusion or lighting conditions (Poppe,
2010). To deal with the challenges, traditional computer vision approaches consider an ac-
tion recognition system as a hierarchical process, where the lower levels are on human de-
tection and segmentation. The aim of these levels is to identify the regions of interest (ROIs)
that correspond to static or moving humans in videos. The visual information of actions is
extracted at the next level and represented by motion features or descriptors (Lowe, 2004;
Dalal and Triggs, 2005; Laptev et al., 2008; Klaser, Marszałek, and Schmid, 2008). This high-
level information is then used to train a classifier for recognizing actions. FIGURE 1.2 shows
the pipeline of such a typical action recognition system.

FIGURE 1.2: Overview of a typical video-based human action recognition system. The
regions of interest (ROIs) corresponding to human motions are first identified. Their spatial-
temporal features or descriptors, e.g. SIFT (Lowe, 2004), HOG/HOF (Dalal and Triggs, 2005;
Laptev et al., 2008), HOG-3D (Klaser, Marszałek, and Schmid, 2008), are then computed and
fed into a classifier for recognizing actions.

Like many other topics in computer vision, human action recognition in videos is a fast
growing field where new needs and challenges appear over a very short period of time.
Some of them include data-independent solutions, real-time demand and the capacity of
recognizing human actions in constrained and unconstrained videos. Meanwhile, the tra-
ditional approaches revealed some limitations that are difficult to overcome such as data-
dependence and requirement of a lot of feature engineering. In this dissertation, we address
the problem of recognizing human actions in RGB-D videos. We aim to fully exploit the ca-
pacity of state-of-the-art Deep Convolutional Neural Networks (D-CNNs) in learning high-
level representation of human motions from RGB-D video sequences for action recognition
task. Our goal is to propose new compact representations from RGB-D data and design
high-performance deep learning models for 3D human action recognition. The proposed
method should be able to automatically learn spatio-temporal motion features from training
videos and recognize many different kinds of actions in unseen and realistic video settings
with a high accuracy.

1.2 Motivation

The development and rapid expansion of information and communication technologies (ICT),
especially Internet Broadcasting Services (IBS) and Social Media Services (SMS) has led to ex-
ponential boom of video data. Multimedia data, comprised of audio, video, and still images
are now easily captured using so many different hardware platforms such as digital com-
puters, notebooks, smartphones, and digital photo cameras. As a result, enormous amount
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of data can be shared at unprecedented levels, in which many of the data are relevant to
human actions. Therefore, there is a large demand for the computer vision community to
recognize what humans do in videos in an automated fashion, playing an important role in
our everyday life.

In recent years, human action recognition continues to be an increasingly active research
in computer vision due to the interest in the development of many intelligent systems. The
main goal of this area is to recognize what humans do in untrimmed videos. Many applica-
tions of video-based action recognition have been developed such as intelligent surveillance
systems (Wei Niu et al., 2004; Valera and Velastin, 2005; Weiyao Lin et al., 2008), human-
computer interfaces (Pickering, Burnham, and Richardson, 2007; Sonwalkar et al., 2015),
health care (Zouba et al., 2009), and virtual reality (Maqueda et al., 2015). FIGURE 1.3 shows
some specific applications in which the recognition of human actions plays a key role.

(a) (b) (c)

(d) (e) (f)

FIGURE 1.3: Some important applications of video-based human action analysis: (a) rec-
ognizing and tracking human actions in intelligent transport systems (Ryoo and Aggarwal,
2008); (b) stealing detection (Ryoo and Aggarwal, 2007); (c) remote monitoring service for
elderly persons based on fall detection (Zouba et al., 2009); (d) pedestrian path prediction in
self-driving cars (Kooij, Schneider, and Gavrila, 2014); (e) action recognition based on depth
sensors in the entertainment industry (Zhang, 2012); (f) action localization and analysis in
realistic sports videos (Tian, Rahul, and Shah, 2013).

Besides the specific applications mentioned above, there are many other new applica-
tions based on human action recognition techniques, which occur over a short period of
time. As shown in the following FIGURE 1.4, we can now use a drone that integrates an
action recognition algorithm to detect violent actions in crowds (Singh, Patil, and Omkar,
2018) or retail companies are now able to replace their traditional checkout systems by new
autonomous systems. It is clear that there is a large demand in building real-time and ac-
curate video-based human action recognition systems, which plays a huge impact for a safe
and comfortable life.
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(a) (b)

FIGURE 1.4: (a) Recognizing customer behaviors and their actions at an autonomous check-
out system. The figure was taken from Standard Cognition (https://standard.ai/); (b)
Detecting violent and abnormal crowd activity using drone (Singh, Patil, and Omkar, 2018).

1.3 Research challenges

A rapid increase in the number of researchers and techniques focusing on vision-based hu-
man action recognition has significantly advanced this field. However, this area is still chal-
lenging due to many obstacles such as large intra-class variations (see FIGURE 1.5), fuzzy
boundaries between classes, viewpoint variations, occlusions, appearance changes, cam-
era motion, cluttered background, lighting conditions, recording settings and so on (Poppe,
2010). Therefore, one of the main challenges with human action recognition in videos is to
find a robust representation of actions, which is discriminative enough so that action recog-
nizers or learning models can classify various different action classes.

FIGURE 1.5: The large intra-class variation and the variety in camera views are two enor-
mous challenges in recognizing human actions. Sample frames are taken from the NTU-
RGB+D dataset (Shahroudy et al., 2016).

In addition to the traditional challenges mentioned above, researchers and engineers
also face new challenges. For instance, after the success of the action recognition systems
on benchmarks produced “in the lab”, more complex benchmarks have been released such
as Hollywood-I (Laptev et al., 2008), Hollywood-II (Marszalek, Laptev, and Schmid, 2009),
HMDB-51 (Kuehne et al., 2011), UCF-50 (Reddy and Shah, 2013), UCF-101 (Soomro, Zamir,
and Shah, 2012), YouTube (Liu, Jiebo Luo, and Shah, 2009), Sports-1M (Karpathy et al., 2014),

https://standard.ai/
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ActivityNet (Heilbron et al., 2015), NTU-RGB+D (Shahroudy et al., 2016) and YouTube 8M
(Abu-El-Haija et al., 2016). The complexity of large-scale datasets leads to the new problem
of recognizing “complex actions and behaviors in untrimmed videos”. We show in this thesis
that experimental results on realistic human action datasets have so far given limited results
specially when dealing with a large and varied range of actions. Additionally, how to build
“real-time action recognition systems” is also a big question, in particular in the cases where
these systems are built based on time-consuming models like machine learning and deep
learning algorithms. The field of video-based human action recognition requires a combina-
tion of several disciplines including psychology and ontology (Rodríguez et al., 2014), and
this is one of difficulties.

1.4 Problem statement and scope of study

This dissertation focuses on the problem of 3D human action recognition in realistic video
material, e.g. surveillance videos. In our work, we consider “an action” as characterized by
simple motion patterns, typically executed by a single person. An action can be defined as a
spatio-temporal sequence of human body movements that consists of several action primi-
tives ordered in time, starting and ending with temporal points. Meanwhile, “an activity” is
more complex and involves coordinated actions among a small number of humans. Given
a video that contains one or several actions, our goal is to predict action labels that occur in
the video. This is also the main goal of the action recognition problem.

Over the last years, many techniques have been proposed for this task. In particular,
deep learning based approaches have shown impressive performance and big potential in
analyzing and recognizing human actions in videos. Many different deep architectures have
been proposed for action recognition and advanced the state-of-the-art in this field. In this
thesis, our first goal is to review and compare the existing deep learning-based methods for
human action recognition in videos in order to identify which architectures and video rep-
resentations are the best suitable. We then indicate the limitations of the existing techniques
and propose new approaches for recognizing actions. More specifically, the following objec-
tives are included in this thesis:

•We aim to identify the current state of deep learning-based approaches for human ac-
tion recognition in videos, providing the most commonly used deep architectures for learn-
ing human motion features and show how they could be applied to address challenges in
action recognition as well as discuss the advantages and limitations of each approach.

•We investigate and propose new 3D motion representations and deep learning frame-
works for video-based human action recognition, both from RGB-D and RGB video se-
quences. The proposed approach should be able to recognize human actions from realistic
videos and ensure a high accuracy.

• We aim to collect and introduce a real-world RGB-D dataset for evaluating our pro-
posed action recognition and behavior analysis approach in order to improve security and
safety in public transport.

1.5 Main contributions

The main contributions of this thesis can be summarized as follows:

• First, we introduce the problem of recognizing human actions in videos and provide an
extensive review on deep learning-based action recognition methods. Over more than 250
related publications from top-tier conferences and journals, we identify the current state and
the next questions of this field (Chapter 3).

• Second, we present new skeleton-based representations and deep learning frameworks for
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3D action recognition from skeletal data provided by depth sensors. The proposed skeleton-
based representations, which we refer to as SPMF and Enhanced-SPMF, are able to capture
the spatio-temporal dynamics of skeleton movements and transforms them into a 2D struc-
ture as a single RGB image that suits the problem of learning representation with Deep Con-
volutional Neural Networks (D-CNNs). The proposed learning framework directly learns
an end-to-end mapping between skeleton sequences and their action labels via the SPMF
or Enhanced-SPMF. Experimental results on four highly competitive benchmark datasets
demonstrate that the proposed method obtains a significantly improvement over the exist-
ing state-of-the-art approaches. In particular, our computational efficiency evaluations show
that this method is able to achieve high-level of performance (Chapter 4).

• Third, this thesis introduces CEMEST database, our new RGB-D dataset depicting pas-
senger behaviors in public transport. It consists of 203 untrimmed real-world surveillance
videos of realistic « normal » and « anomalous » events. We achieve promising results in real-
world conditions of this dataset thanks to the support of data augmentation and transfer
learning techniques. This enables the construction of real-world applications based on deep
learning for enhancing monitoring and security in public transport (Chapter 4).

• Finally, we propose and introduce a unified deep learning framework for 3D pose estima-
tion and action recognition from RGB images. This framework uses a 2D skeleton detector
called OpenPose to produce 2D human poses from RGB images. Then, this framework is
integrated a deep neural network in order to learn a “2D-to-3D mapping” between 2D poses
and 3D poses. The obtained 3D human poses are then used for the recognition task (Chapter
5). We show that the proposed deep learning framework is able to solve both two tasks in
an effective manner.

1.6 Structure of the thesis

The thesis is structured as follows: Chapter 2 is an introduction to deep learning. We present
background knowledge around machine learning and deep learning as well as the most
important deep learning models. Chapter 3 provides a review of various state-of-the-art
deep learning-based techniques for human action recognition in RGB-D videos. A detailed
description of our proposed approaches for skeleton-based action recognition using depth
sensors is given in Chapter 4. Chapter 5 describes the proposed deep learning approach
for 3D skeleton reconstruction and action recognition from RGB cameras. Finally, Chapter 6
summarizes and discusses the key findings of this thesis. We then outline the limitations of
our approaches and end this thesis by providing some promising directions for future work.
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Chapter overview: In this chapter, we present the basic concepts of deep learning and re-
view some key deep learning algorithms such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks with Long Short-Term Memory (RNN-LSTMs), Deep Belief Net-
works (DBNs), Stacked Denoising Autoencoders (SDAs), and Generative Adversarial Net-
works (GANs). The key idea and mathematical model behind each algorithm will be intro-
duced. This helps us to identify a suitable deep learning model for addressing the problem
of human action recognition in videos.

2.1 Deep Learning: A summary

For the sake of completeness, we present in this chapter an overview of deep learning al-
gorithms – the key technique that will be used in this thesis for addressing the problem
of human action recognition in videos. Before that, we briefly summarize the concept of
machine learning. Machine learning is the branch of algorithms that allows computers to
automatically learn from data. They can be used for identifying objects in images, detect-
ing spam emails, understanding text, finding genes associated with a particular disease and
numerous other real-life applications. The primary goal of machine learning is to develop
general-purpose algorithms, which are able to make accurate predictions in many differ-
ent tasks. Mathematically, machine learning algorithms try to match the density function
that produced the data. For example in classification problems, we try to identify a set of
categories C from a space of all possible examples X . Given any set of labeled examples
(x1, c1), ..., (xm, cm) , where xi ∈ X and ci ∈ C, the goal of machine leaning is to find a map-
ping function F (·) that satisfies ci = F (xi) for all i. Machine learning methods are typically
classified into four categories including supervised learning, unsupervised learning, semi-
supervised learning and reinforcement learning.

Deep learning is a class of techniques in machine learning. It became a major break-
through in computer vision after the AlexNet (Krizhevsky, Sutskever, and Hinton, 2012a)
achieved a record performance on ImageNet (Rahmani and Mian, 2016). Generally speak-
ing, deep learning methods are machine learning methods, used to model high-level abstrac-
tions in data through the use of artificial neural networks, which are composed of multiple
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(a) (b)

FIGURE 2.1: (a) Illustration of a multilayer network model (LeCun, Bengio, and Hinton,
2015). This model allows a computer to automatically determine the representations needed
for prediction tasks. The first layer, namely “visible layer", contains natural data in their raw
form. Starting from the visible layer, a series of hidden layers is built through extracting
increasingly abstract features from lower levels. More abstract concepts are learned from
the lower levels. The highest layer contains useful information for predicting the content
of input data. (b) An example of a deep learning model for classification task (Zeiler and
Fergus, 2014; Goodfellow, Bengio, and Courville, 2016). Given some pictures, the first layer
includes an array of pixel values. The first hidden layer represents the presence of edges.
The second hidden layer identifies corners and contours from edges provided by the first
layer. By connecting corners and contours, the third layer can determine specific objects.

nonlinear transformations. FIGURE 2.1 illustrates a multilayer network and the construc-
tion process of the higher layers from the first layer. Various deep learning architectures
have been proposed over the years (see TABLE 2.1). Many of them have been shown to
produce state-of-the-art performances on many visual recognition tasks, not least within
human action recognition. In the next sections, we describe the most important deep learn-
ing architectures for video-based human action recognition including Convolutional Neural
Networks (CNNs – Fukushima, 1980; Rumelhart, Hinton, and Williams, 1986; LeCun et al.,
1989a; Krizhevsky, Sutskever, and Hinton, 2012a), Recurrent Neural Networks with Long
Short-Term Memory (RNN-LSTMs – Hochreiter and Schmidhuber, 1997), Deep Belief Net-
works (DBNs – Hinton, Osindero, and Teh, 2006), Stacked Denoising Autoencoders (SDAs
– Vincent et al., 2008), and Generative Adversarial Networks (GANs – Goodfellow et al.,
2014).

2.2 Convolutional Neural Networks (CNNs)

After the success of the AlexNet (Krizhevsky, Sutskever, and Hinton, 2012a) in 2012, Convo-
lutional Neural Networks (CNNs) became one of the most important deep learning models
and play a dominant role for solving visual recognition tasks. The CNN models are able
to learn visual representations on the raw data without any hand-crafted feature extrac-
tion. The idea of CNNs was firstly presented in 1980 by Fukushima (Fukushima, 1980), in
which CNNs are inspired by the structure of the visual nervous system (Hubel and Wiesel,
1962). Different CNN architectures continued to be proposed and developed, e.g. by Rumel-
hart, Hinton, and Williams, 1986, LeCun et al., 1989a and Krizhevsky, Sutskever, and Hin-
ton, 2012a. Three key ideas behind a CNN architecture include “local connections”, “shared
weights”, and “pooling” – which are described below.

Local connections: In regular neural networks, each hidden layer consists of a set of neu-
rons where each neuron is fully connected to all neurons in the previous layer. This model
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TABLE 2.1: Some popular deep learning architectures for visual recognition tasks, includ-
ing human action recognition.

Architecture Main articles
CNNs Fukushima, 1980;

Rumelhart, Hinton, and Williams, 1986;
LeCun et al., 1989a;
Krizhevsky, Sutskever, and Hinton, 2012a;
Szegedy et al., 2015a;
Simonyan and Zisserman, 2014b;
Kaiming et al., 2016.

RNN-LSTMs Hochreiter and Schmidhuber, 1997.

DBNs Hinton, Osindero, and Teh, 2006;
Salakhutdinov and Hinton, 2009.

Sparse Coding Olshausen and Field, 1996;
Lee et al., 2006.

SDAs Vincent et al., 2008.

GANs Goodfellow et al., 2014.

does not work efficiently when the input vector has a high dimension. To make this more ef-
ficient, one possibility is to reduce the number of connections between the first hidden layer
to the input or each hidden layers to each other. Given an image as an input vector, every
input pixel is not connected to every neuron in the first hidden layer. Instead, the neurons in
the first hidden layer are connected to localized regions of the input image. This sub-region
is called the “local receptive field". For each local receptive field, we can identify a neuron in
the first hidden layer.

Shared weights: For standard neural networks such as multilayer perceptrons (MLP –
Ruck, Rogers, and Kabrisky, 1990), all neurons of the first layer are computed by the dot
product function of input vector x and its weights w, where many different wi values are
used. A technique called “weight sharing" is used to reduce the number of parameters wi in
a CNN. Specifically, some of parameters are constrained to be equal to each other. Mathe-
matically, the weight sharing technique can be performed by using a convolution operator,
in which the filters are applied to many local receptive fields in the input image. A “feature
map" is generated by sliding a filter over the input matrix and computing the dot product.

Pooling: “Pooling" is a non-linear down-sampling process. Its main goal is to reduce
the dimensionality of the input features while retaining the most important information in
feature maps. This process allows to reduce the computational cost. At the same time it pro-
vides invariance to small transformations. Pooling is performed by using a pooling function
to replace the output of the network at a certain location with summary statistics of the
nearby outputs.

These concepts above can now be put together to form a complete CNN architecture that
consists of a series of stages, as shown in FIGURE 2.2. In a CNN, the convolution layer plays
the role of a local feature extractor while the pooling layer merges semantically similar fea-
tures into one and reduce their dimensions. The last layer is a fully connected layer working
as a classifier. Rectified Linear Units (ReLUs – Nair and Hinton, 2010) are commonly used as
activation functions to train CNNs and Dropout (Srivastava et al., 2014) is used to prevent
overfitting. Further details on the development of the CNNs can be found for example on
state-of-the-art CNN architectures such as GoogLeNet (Szegedy et al., 2015a), VGG-Net (Si-
monyan and Zisserman, 2014b), ResNet (Kaiming et al., 2016), Inception-v3 (Szegedy et al.,
2016), etc.
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FIGURE 2.2: Illustration of the typical block diagram of a CNN (Sermanet and LeCun,
2011). The input image is fed through two stage of convolutions and subsampling for learn-
ing rich features from raw data. A linear classifier is used for classification task.

2.3 Recurrent Neural Networks with Long Short-Term Mem-
ory units (RNN-LSTM)

Recurrent Neural Networks (RNNs) are commonly used to model the temporal dynamics
of human actions in videos because this architecture allows to store and access the long
range contextual information of a temporal sequence. The main difference between RNNs
and MLPs (Ruck, Rogers, and Kabrisky, 1990) is the presence of cyclical connections in the
RNNs. With these connections, an RNN can learn to map from the entire history of pre-
vious inputs to each output (Graves, 2008). However, they are very difficult to train due
to the vanishing gradient problem (Bengio, Simard, and Frasconi, 1994). To this end, Long
Short-Term Memory units (LSTM – Hochreiter and Schmidhuber, 1997) have been proposed.
FIGURE 2.3 describes the LSTM structure and its information flow. RNNs are not only able
to make use of previous context in data sequences but also to exploit future context as well.
Bidirectional RNN-LSTMs (Schuster and Paliwal, 1997) have been proposed to do this by
processing and storing both past and future context of data with two separate hidden lay-
ers. All the information is then fed to the same output layer. By replacing the nonlinear units
in the Bidirectional RNNs architecture by LSTM cells, we can obtain RNN-LSTMs as shown
in FIGURE 2.4. In the next chapter, we will go into more detail on how RNN-LSTMs can be
applied to model spatial and temporal dynamics of human actions.

2.4 Deep Belief Networks (DBNs)

Deep Belief Networks (DBNs – Hinton, Osindero, and Teh, 2006) have been used success-
fully for many recognition tasks such as handwritten digits recognition (Hinton, 2002), object
recognition (Nair and Hinton, 2009), modeling human motion (Taylor, Hinton, and Roweis,
2007), etc. The DBNs are probabilistic generative models that are constructed by stacking
several Restricted Boltzmann Machines (RBMs – Hinton, Sejnowski, and Ackley, 1984). The
RBMs are shallow networks containing two layers: one layer of “visible" units that represents
the input data and one layer of “hidden" units that learns to represent features. As shown in
FIGURE 2.5a, in an RBM architecture, all visible units of the visible layer are connected to all
the hidden units of the hidden layer and there are no connections between two units of the
same layer. The standard type of RBM has binary-valued hidden and visible units, meaning
each unit can only be in one of two states, “0" or “1". The probability of setting a unit to “1"
is a sigmoid function of its bias, weights, and the state of other units. Given a binary RBM
with m visible units V = {vi}, i ∈ (1, ..., m) and n hidden unitsH = {hj}, j ∈ (1, ..., n), where
vi and hj are the binary states of visible unit i and hidden unit j or (vi, hj) ∈ (0, 1)m+n. The
joint probability distribution for visible and hidden units (Hinton, 2010) is defined as

P(vi, hj) =
1
Z

e−E(vi ,hj), (2.1)
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it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)
f t = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f )

ct = f tct−1 + ittanh(Wxcxt + Whcht−1 + bc)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ottanh(ct)

FIGURE 2.3: Diagram of an LSTM unit (Graves, 2008). A typical LSTM unit contains an
input gate it, a forget gate f t, an output gate ot, an output state ht and a memory cell state ct.
The information flow is described by the above equations where σ is the sigmoid activation;
xt is the input to the network at time t; the matrices W are the connection weights between
units.

FIGURE 2.4: Architecture of an RNN-LSTM (Graves, Mohamed, and Hinton, 2013). The
circular nodes represent LSTM units. Given an input sequence x = (x1, ..., xT), the network
computes the forward hidden sequence

−→
h t and the backward hidden sequence

←−
h t. The

output vector sequence y = (y1, ..., yT) is then computed by yt = W←−
h y

←−
h t + W−→

h y

−→
h t + by,

where W←−
h y

is the input-hidden weight matrix and the by terms denote bias vectors.
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(a) (b)

FIGURE 2.5: (a) An RBM with m visible units and n hidden units. (b) Overview of a DBN
composed of d RBMs. Here, the symbols W1,W2,...,Wd denote the weight matrices between
the connections.

where Z is the partition function computed by summing over possible pairs of (vi, hj),

Z = ∑
vi ,hj

e−E(vi ,hj). (2.2)

E(vi, hj) is the energy function given by

E(vi, hj) = −
m

∑
i=1

aivi −
n

∑
j=1

bjhj −∑
i,j

vihjwi,j. (2.3)

In equation (2.3), ai and bj are biases, wi,j is the weight between vi and hj units. In a binary
RBM model, there are no direct connections between visible units nor between hidden units.
Therefore, given the input data v through the visible units, the binary state of each unit hj is
1 with probability

p(hj = 1|v) = σ(bj + ∑
i

viwi,j), (2.4)

where σ(x) is the sigmoid function, σ(x) =
1

1 + e−x . Given a hidden vector h, we can also

reconstruct the states of a visible unit by

p(vi = 1|h) = σ(ai + ∑
j

hjwi,j). (2.5)

During the training phase, the weights wi,j and biases ai, bj can be updated by solving
the following optimization problems

∂ log p(v)
∂wi,j

= 〈vihj〉data − 〈vihj〉model , (2.6)

∂ log p(v)
∂ai

= 〈vi〉data − 〈vi〉model , (2.7)

∂ log p(v)
∂bj

= 〈hj〉data − 〈hj〉model . (2.8)

where 〈·〉 denotes an average over the sampled states. The conditional distribution p(hj|v)
in equation (2.4) shows that the hidden layer can be constructed by updating the state of
units hj when given a data vector v. In practice, since all units in the hidden layer are condi-
tionally independent given the visible layer, the state of each unit can be computed by using
block Gibbs sampling (Hinton, Osindero, and Teh, 2006). This technique allows to update
the state of all the units in parallel. A DBN could be viewed as a stack of several RBMs.



2.5. Stacked Denoising Autoencoders (SDAs) 13

FIGURE 2.6: The typical structure of an autoencoder.

Therefore, training a DBN is performed through training each of its RBM. The work of Hin-
ton, Osindero, and Teh, 2006 provided an efficient procedure to train DBNs. During training,
the current hidden layer is regarded as a visible layer for the next hidden layer and training
a DBN starts from the lowest RBM. This procedure is repeated layer-to-layer until reaching
the highest RBM and known as the “greedy layer-wise training strategy". In general, each com-
ponent of the DBNs or an RBM acts as a feature extractor on inputs. It extracts “low level"
features at the bottom hidden layer as well as more “abstract" features at the higher hidden
layers. For classification tasks, the DBN model could be extended by adding a soft-max layer
on the top of its architecture.

2.5 Stacked Denoising Autoencoders (SDAs)

Stacked Denoising Autoencoder (SDA) is another important deep learning architecture. It
was first introduced in 2008 by Vincent et al., 2008. The idea of an autoencoder is shortly
described as follows: given a set of data points x = {x1, x2, ..., xm}, mapping x to another set
of data points y = {y1, y2, ..., yn}, where n < m. From the compressed set y, we reconstruct a
set of x̃, which approximates the original data x. The mapping x 7→ y is called “encoding" and
the mapping y 7→ x̃ is called “decoding". Formally, the processes of encoding and decoding
are performed as follows

y = W1xi + b1, (2.9)

x̃ = W2yi + b2, (2.10)

where W1 ∈ Rm×m, W2 ∈ Rn×n. FIGURE 2.6 illustrates the network architecture of a typ-
ical autoencoder. To reconstruct x̃ and approximate the original data x, we minimize the
difference between x and x̃ by minimizing the function

J(W1, b1, W2, b2) =
m

∑
i=1

(x̃i − xi)
2. (2.11)

From equations (2.10) and (2.11), a SDA can be trained by optimizing the following loss
function

J(W1, b1, W2, b2) =
m

∑
i=1

((W1W2xi − 1)xi + b1W2 + b2)
2 . (2.12)

The SDAs are constructed by stacking several autoencoders together to create a deep archi-
tecture. The weights are fine-tuned with a back-propagation algorithm. The unsupervised
pre-training of each autoencoder is performed in a greedy layer-by-layer manner. Once these
SDAs were learned, its output will then be used as the input representations of a supervised
learning algorithm for recognition tasks.
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2.6 Generative Adversarial Networks (GANs)

In recent years, Generative Adversarial Networks (GANs – Goodfellow et al., 2014) have
gained a lot of popularity in the field of computer vision. GAN-based approaches have been
used and shown great results in image synthesis (Reed et al., 2016), image super-resolution
(Ledig et al., 2017), image-to-image translation (Isola et al., 2017) and so on. In this section,
we briefly review the mathematical model behind a GAN framework and its training proce-
dure.

A GAN model consists of two components (see FIGURE 2.71): a generator G and a dis-
criminator D. Given an input noise vector z, which is sampled from a normal distribution
pz(z), the generator G is trained to generate an image x in order to ensure that x is in-
distinguishable from a real data distribution pdata(x). While training G, we maximize the
probability so that x belongs to the given distribution pdata(x). The generated image x is fed
into the discriminator D alongside a stream of images taken from the real distribution. In
other words, D is trained to estimate the probability of a given sample coming from the real
distribution. To this end, we need to make sure that the decisions of the discriminator D over
real data are accurate by maximizing Ex∼pdata(x)[log D(x)]. Meanwhile, given a fake sample
G(z), z ∼ pz(z), the discriminator is expected to output a probability, D(G(z)), close to zero
by maximizing Ez∼pz(z)[log(1− D(G(z)))]. On the other hand, the generator is trained to
increase the chances of D producing a high probability for a fake example, thus to minimize
Ez∼pz(z)[log(1− D(G(z)))]. When combining both aspects together, D and G are playing a
minimax game, in which we should optimize the following loss function L(D, G)

min
G

max
D
L(D, G) = min

G
max

D
(Ex∼pdata(x)[log D(x)]

+Ez∼pz(z)[log(1− D(G(z)))]).
(2.13)

In practice, both components G and D are two neural networks. The loss function
L(D, G) from equation (2.13) can be optimized using gradient-based methods since both
G and D are differentiable with respect to their inputs and parameters. In 2016, Radford,
Metz, and Chintala, 2015 introduced a set of architectures called Deep Convolutional GANs
(DCGANs) in order to train GANs in a better way. This study showed that GANs can learn
good representations of images for supervised learning and generative modeling. In Chap-
ter 3, we will examine the potentials of GANs in analyzing actions in videos.

FIGURE 2.7: Training process of a Generative Adversarial Network (GAN).

1The figure was taken from https://www.analyticsvidhya.com/blog/2017/06/
introductory-generative-adversarial-networks-gans/.

https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/
https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/


2.7. Conclusion 15

2.7 Conclusion

We have presented in this chapter the basic concepts of deep learning and review some key
deep learning algorithms such as Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks with Long Short-Term Memory units (RNN-LSTMs), Deep Belief Networks
(DBNs), Stacked Denoising Autoencoders (SDAs) and Generative Adversarial Networks
(GANs) as well as the mathematical concepts behind them. At this stage, the different deep
networks are just presented without any comparison between them. The main goal in the
context of this PhD work is to proceed to human action recognition and that is why the
next chapter is dedicated to the presentation and analysis of deep learning approaches for
video-based human action recognition.
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Chapter overview: Video-based human action recognition is an important yet challenging
task in computer vision. The ability to accurately detect and predict actions in unknown
videos enables the construction of many important applications such as smart surveillance,
human-machine interface, robotics and so on. In recent years, deep learning-based ap-
proaches have shown impressive performance and big potential in analyzing and recog-
nizing human actions in videos. Many different deep architectures have been proposed for
action recognition and advanced the state-of-the-art in this field. This chapter provides a
detailed and comprehensive overview of the current state of deep learning-based human ac-
tion recognition from RGB-D video sequences. Specifically, we describe the most commonly
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used deep architectures for learning human motion features and show how they could be ap-
plied to address challenges in action recognition as well as discuss the advantages and lim-
itations of each approach. In particular, through quantitative analyses on three large-scale
benchmark datasets including HMDB-51 (Kuehne et al., 2011), UCF-101 (Soomro, Zamir,
and Shah, 2012) and NTU-RGB+D (Shahroudy et al., 2016), we identify state-of-the-art deep
architectures that have been successfully applied for human action recognition and then pro-
vides current trends and open problems for future works. Many public action recognition
datasets are also introduced and analyzed, providing the latest achievements and challenges
of the field.

3.1 Related reviews and public datasets

3.1.1 Previous reviews

We first consider related earlier reviews in video-based human action recognition. Looking
at the major conferences and journals in computer vision and image processing, several ear-
lier surveys have been published (Aggarwal and Cai, 1999; Moeslund and Granum, 2001;
Wang, Hu, and Tan, 2003; Moeslund, Hilton, and Krüger, 2006; Turaga et al., 2008). For in-
stance, Aggarwal and Cai, 1999 reviewed methods for human motion analysis, focusing on
three major areas: motion analysis, tracking a moving human from a single view or multiple
cameras and recognizing human actions from image sequences. Moeslund and Granum,
2001 reviewed approaches on human motion capture. They considered a general structure
for motion analysis systems as a hierarchical process with four steps: initialization, track-
ing, pose estimation, and recognition and then reviewed the papers based on this taxonomy.
Wang, Hu, and Tan, 2003 presented an overview on human motion analysis, in which motion
analysis was illustrated as a three-level process including human detection, human tracking,
and behavior understanding. Moeslund, Hilton, and Krüger, 2006 described the work in
human capture and analysis, centered on initialization of human motion, tracking, pose es-
timation, and recognition. Turaga et al., 2008 reviewed the major approaches for recognizing
human actions and activities. They considered “actions" as characterized by simple motion
patterns, typically executed by a single person. Meanwhile, “activities" are more complex
and involve coordinated actions among a small number of humans.

Many reviews on human action recognition approaches have been made since 2010 (e.g.
Poppe, 2010; Weinland, Ronfard, and Boyer, 2011; Popoola and Wang, 2012; Ke et al., 2013;
Aggarwal and Xia, 2014; Guo and Lai, 2014). For instance, Poppe, 2010 focused on image
representation and action classification methods. A similar survey by Weinland, Ronfard,
and Boyer, 2011 also concentrated on approaches for action representation and classifica-
tion. Popoola and Wang, 2012 presented a survey focusing on contextual abnormal hu-
man behavior detection for surveillance applications. Ke et al., 2013 reviewed human action
recognition methods for both static and moving cameras, covering many problems such as
feature extraction, representation techniques, action detection and classification. Aggarwal
and Xia, 2014 introduced a review of human action recognition based on 3D data, especially
using RGB and depth information acquired by 3D sensors. Meanwhile Guo and Lai, 2014
provided a review of existing approaches on still image-based action recognition.

Recently, Cheng et al., 2015 reviewed approaches on human action recognition in which
all methodologies are classified into two categories: single-layered approaches and hierar-
chical approaches. Vrigkas, Nikou, and Kakadiaris, 2015 categorized human action recog-
nition methods into two main categories including “unimodal" and “multimodal". The au-
thors then reviewed action classification methods for each of these two categories. The
work of Subetha and Chitrakala, 2016 mainly focused on human action recognition and
human-object interaction methods. Presti and La Cascia, 2016 provided a review of human
action recognition based on 3D skeletons, summarizing the main technologies, including
both hardware and software for solving the problem of action classification inferred from
skeletal data. Recently, another review by Kang and Wildes, 2016 summarized various ac-
tion recognition and detection algorithms, focused on encoding and classifying motion fea-
tures. TABLE 3.1 summarizes previous reviews of this field.
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To the best of our knowledge, there is no comprehensive review on deep learning-based
human action recognition1. We believe that such a review is very beneficial for the computer
vision community and is what motivates us to realize this work. Different from previous
works, we focus on reviewing and analyzing deep learning approaches for human action
recognition in videos. Not only to provide a comparative analysis about the current state
of deep learning based action recognition approaches, but also to point out new challenges
and trends in this field. Our review will also add to the latest reviews on human action
recognition in the literature.

TABLE 3.1: Summary of previous reviews on video-based human action recognition and
their key points. Ordered by year of publication, earliest to latest.

Authors & Year Main topics

Aggarwal and Cai, 1999 Human motion analysis, tracking.

Moeslund and Granum, 2001 Motion initialization, tracking, pose estimation, and recognition.

Wang, Hu, and Tan, 2003 Human detection, tracking, action understanding.

Moeslund, Hilton, and Krüger, 2006 Human motion capture, action and behavior analysis.

Turaga et al., 2008 Human behavior recognition.

Poppe, 2010 Feature extraction and classification of human actions.

Weinland, Ronfard, and Boyer, 2011 Full-body action segmentation and recognition.

Popoola and Wang, 2012 Human motion analysis and behavior recognition.

Ke et al., 2013 Action recognition from static and moving cameras.

Aggarwal and Xia, 2014 Human action recognition from 3D data.

Guo and Lai, 2014 Human action recognition from still image.

Cheng et al., 2015 Single-layered and hierarchical approaches for action recognition.

Vrigkas, Nikou, and Kakadiaris, 2015 Human action classification.

Subetha and Chitrakala, 2016 Recognition of action and human-object interactions.

Presti and La Cascia, 2016 Action classification based on 3D skeletal data.

Kang and Wildes, 2016 Human action detection and recognition.

3.1.2 Benchmark datasets for human action recognition in videos

With the increase in the study of human action recognition methods, many benchmark
datasets have been recorded and published (e.g. Schuldt, Laptev, and Caputo, 2004; Gorelick
et al., 2007; Weinland, Ronfard, and Boyer, 2006; Schuldt, Laptev, and Caputo, 2004; Marsza-
lek, Laptev, and Schmid, 2009; Liu, Jiebo Luo, and Shah, 2009; Singh, Velastin, and Ragheb,
2010; Michael and Jake, 2009; Li, Zhang, and Liu, 2010; Wang et al., 2012; Niebles, Chen,
and Fei-Fei, 2010; Oh et al., 2011; Kuehne et al., 2011; Sung et al., 2011; Koppula, Gupta,
and Saxena, 2013; Yun et al., 2012a; Wolf et al., 2014; Reddy and Shah, 2013; Soomro, Zamir,
and Shah, 2012; Wang et al., 2014; Rahmani et al., 2016; Karpathy et al., 2014; Jiang et al.,
2014; Gorban et al., 2015; Heilbron et al., 2015; Abu-El-Haija et al., 2016; Shahroudy et al.,
2016; Sigurdsson et al., 2016). Much progress in human action recognition has been demon-
strated on these standard benchmark datasets. They allow researchers to develop, evaluate
and compare new approaches for the problem of human action recognition in videos. In
this section, we summarize the most important benchmark datasets, from the early datasets
that contain simple actions and acquired under controlled environments, e.g. KTH (Schuldt,
Laptev, and Caputo, 2004), Weizmann (Gorelick et al., 2007) or IXMAS (Weinland, Ronfard,
and Boyer, 2006), to recent benchmark datasets with millions of video samples providing
complex actions and human behaviors from the real world scenarios, e.g. Sports-1M (Karpa-
thy et al., 2014) and NTU-RGB+D (Shahroudy et al., 2016). TABLE 3.2 shows the datasets
and their main descriptions. We divided these benchmarks into four categories, including

1The study was conducted at the end of year 2016. New approaches in 2017 and later were not con-
sidered. However, the latest approaches on deep learning-based action recognition were mentioned
and analyzed in technical sections of this thesis.
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single action (category I), human-human interaction, human-object interaction and behavior
(category II), surveillance (category III) and sport videos and other types (category IV).

The complexity of each dataset depends much on its recorded setting and acquisition
process. For example, early benchmarks such as KTH (Schuldt, Laptev, and Caputo, 2004),
Weizmann (Gorelick et al., 2007) or IXMAS (Weinland, Ronfard, and Boyer, 2006) were made
under controlled environments for idealized human actions. Specifically, all of them are
composed of simple and unrealistic actions with homogeneous background. Many methods
have already achieved excellent recognition rates on these benchmarks, e.g. 100% on the
Weizman (Gorelick et al., 2007) by Ikizler and Duygulu, 2007 or Brahnam and Nanni, 2009.
In other words, we can say that the simple datasets have already been solved.

After the success of the action recognition systems on benchmarks produced “in the lab”,
more complex benchmarks have been released, for instance, MSR Action3D (Li, Zhang, and
Liu, 2010), UT-Interaction (Michael and Jake, 2009), Daily Activity3D (Wang et al., 2012),
CAD-60 (Jaeyong Sung et al., 2012), CAD-120 (Koppula, Gupta, and Saxena, 2013), VIRAT
2.0 (Oh et al., 2011), SBU-Kinect Interaction (Yun et al., 2012a). These datasets aim to pro-
vide challenging videos of human action under unconstrained environments with complex
background and illumination condition. However, they are still not “real” actions. Real and
large-scale benchmark datasets play a key role in exploiting machine learning algorithms, in
particular deep learning techniques. To solve this problem, many researchers have extracted
realistic situations from movies or sport videos on social networks, e.g. YouTube, to make
new realistic benchmark datasets. See for example: Hollywood-1 (Schuldt, Laptev, and Ca-
puto, 2004), Hollywood-2 (Marszalek, Laptev, and Schmid, 2009), HMDB-51 (Kuehne et al.,
2011), UCF-50 (Reddy and Shah, 2013), UCF-101 (Soomro, Zamir, and Shah, 2012), YouTube
Liu, Jiebo Luo, and Shah, 2009, Sports-1M (Karpathy et al., 2014), ActivityNet (Heilbron
et al., 2015), YouTube 8M (Abu-El-Haija et al., 2016). To build these benchmarks, a general
approach is to collect videos from “in-the-wild” sources with a large amount of samples and
action classes. It can easily be noticed that several datasets are designed for improving the
learning performance of deep learning models due to their very large-scales. For exam-
ple, there are around one million YouTube videos belonging to a taxonomy of 487 classes
in Sports-1M (Karpathy et al., 2014) and ActivityNet (Heilbron et al., 2015) provides more
than 200 activity classes with 10,024 training videos. The NTU-RGB+D dataset (Shahroudy
et al., 2016) contains more than 56 thousand video samples, 4 million frames with 60 dif-
ferent action classes and performed by 40 different subjects. These large-scale datasets are
an important premise for the development of deep learning-based approaches because they
require a large number of training data and most of the major advances of human action
recognition have come with the creation and the publication of such large-scale datasets.
FIGURE 3.1 and FIGURE 3.2 provide readers an evolution of action recognition benchmarks
in terms of complexity of action and data size, respectively.

The complexity of large-scale datasets also leads to new research and problems. Among
them, the current and most important problem in action recognition that needs to be solved
by the computer vision community is the problem of “recognizing complex actions and behav-
iors in untrimmed videos”. In fact, experimental results on realistic human action datasets
have so far given limited results specially when dealing with a large and varied range of ac-
tions. More details about the recognition performance of deep learning based approaches on
several large-scale action recognition datasets will be discussed in Section 3.3 of this chapter.

3.2 Deep learning approaches for video-based human action
recognition

In this section, we discuss the main challenges in exploiting deep neural networks for human
action recognition in videos. We then review different deep learning architectures for action
recognition and show their pros and cons. More specifically, we review approaches based on
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TABLE 3.2: Some popular benchmark datasets for video-based human action recognition
(ordered by year of publication).

Dataset Author & Year # Action Type of action

KTH (I) Schuldt, Laptev, and Caputo, 2004 6 Walking, jogging, running, boxing,

hand waving, etc.

Weizman (I) Gorelick et al., 2007 10 Walking, running, jumping, etc.

IXMAS (I) Weinland, Ronfard, and Boyer,

2006

13 Check watch, cross arms, wave, punch,

kick, etc.

Hollywood-1 (II) Schuldt, Laptev, and Caputo, 2004 8 Answer phone, get out car, etc.

Hollywood-2 (II) Marszalek, Laptev, and Schmid,

2009

12 Answer phone, drive car, eat, run, etc.

YouTube (II) Liu, Jiebo Luo, and Shah, 2009 8 Basketball shooting, cycling, diving, etc.

MuHAVi (II) Singh, Velastin, and Ragheb, 2010 17 Walk turn back, run stop, punch, kick,

walk fall, etc.

UT-Interaction (II) Michael and Jake, 2009 6 Shake-hands, point, kick, and punch.

MSR Action3D (II) Li, Zhang, and Liu, 2010 20 High arm wave, hammer, hand catch,

high throw, etc.

Daily Activity3D (II) Wang et al., 2012 16 Drink, eat, read book, sit still, play

game, etc.

Olympic Sports (IV) Niebles, Chen, and Fei-Fei, 2010 16 High jump, long jump, triple jump,

hammer throw, etc.

VIRAT 2.0 (III) Oh et al., 2011 12 Opening a vehicle trunk, getting into a

vehicle, etc.

HMDB-51 (II) Kuehne et al., 2011 51 Smile, talk, smoke, eat, drink, etc.

CAD-60 (II) Sung et al., 2011 12 Rinsing mouth, brushing teeth, talking

on the phone, etc.

CAD-120 (II) Koppula, Gupta, and Saxena, 2013 20 Making cereal, reaching, moving, pour-

ing, eating, etc.

SBU-Kinect (II) Yun et al., 2012a 8 Approach, depart, push, kick, punch,

shake hands, etc.

LIRIS (II) Wolf et al., 2014 10 Discussion between two or more people,

taking objects, etc.

UCF-50 (IV) Reddy and Shah, 2013 50 Diving, drumming, tennis swing, tram-

poline jumping, etc.

UCF-101 (IV) Soomro, Zamir, and Shah, 2012 101 Horse riding, hula hoop, ice dancing,

skiing, skijet, etc.

UCLA Multiview

(II)

Wang et al., 2014 10 Pick up, drop trash, walk around, sit

down, stand up, etc.

UWA3D (II) Rahmani et al., 2016 30 Hand waving, dancing, jumping, etc.

Sports-1M (IV) Karpathy et al., 2014 487 Juggling club, pole climbing, skipping

rope, slack-lining, etc.

THUMOS’14 (IV) Jiang et al., 2014 101 Daily and sport actions, e.g. brushing

teeth, driving, etc.

THUMOS’15 (IV) Gorban et al., 2015 101 Daily and sports actions, e.g. brushing

teeth, golf swing, etc.

ActivityNet (II) Heilbron et al., 2015 203 Personal care, eating, drinking, etc.

YouTube-8M (IV) Abu-El-Haija et al., 2016 N/A† Span activities, e.g sports and games.

NTU-RGB+D (II) Shahroudy et al., 2016 60 Drinking, eating, reading, punching,

kicking, hugging, etc.

† There are a total of 4716 classes, including human actions.
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(a) (b)

(c)

FIGURE 3.1: Evolution of action recognition benchmarks: (a) First-generation action
datasets include simple actions with homogeneous background, e.g. KTH (Schuldt, Laptev,
and Caputo, 2004), Weizman (Gorelick et al., 2007) or IXMAS (Weinland, Ronfard, and Boyer,
2006); (b) Second-generation contains more complex actions with background clutter, under
controlled environments, e.g. UWA3D Multiview Activity II dataset (Rahmani et al., 2016),
UCLA Multiview (Wang et al., 2014); (c) Third generation provides very complex and large-
scale datasets, under realistic scenarios, e.g. ActivityNet (Heilbron et al., 2015), or Charades
(Sigurdsson et al., 2016).

FIGURE 3.2: The number of samples in action recognition benchmarks has moved on from
a few hundred videos to millions. The number of action classes also increased over time.
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CNNs (Section 3.2.2); RNN-LSTMs (Section 3.2.3); CNN-LSTM (Section 3.2.4); DBNs (Sec-
tion 3.2.5); SDAs (Section 3.2.6); GANs (Section 3.2.7) and some other architectures (Sec-
tion 3.2.8).

3.2.1 Deep learning for human action recognition: Challenges

In addition to traditional challenges such as viewpoint variation or occlusion, building deep
learning models for video-based action recognition also faces new challenges. The first chal-
lenge is the problem of feature representation, in which the goal is to find motion repre-
sentations that are able to effectively capture and represent the spatio-temporal evolutions
of human motion from RGB-D data before feeding to deep learning networks. Second,
how to design and optimize high-performance deep learning architectures to model the
spatio-temporal dynamics of action from the motion representations for recognition task.
In particular, encoding temporal information and model various temporal dynamics of ac-
tion sequences including both short-term, medium-term, and long-term actions is a big chal-
lenge. Third, most of deep learning based approaches require large labeled training datasets.
Meanwhile, collecting large labeled training data is costly and time-consuming. Therefore,
how to effectively train deep networks on small training data is a problem that needs more
research. Last, both deep networks training and inference are computation-intensive pro-
cesses and how to build a deep learning framework for real applications is an important and
challenging task.

3.2.2 Human action recognition based on CNNs

Many research works on human action recognition based on deep learning models have
been proposed and published. Among them, one of the most used models is Convolutional
Neural Network (CNN). Researchers have successfully applied CNN-based approaches for
many visual tasks, including people detection and tracking (Fan et al., 2010; Sermanet et al.,
2013; Wang et al., 2015a), human pose estimation (Nowlan and Platt, 1994; Jain et al., 2013;
Jain et al., 2014; Gkioxari et al., 2014; Tompson et al., 2014; Chéron, Laptev, and Schmid,
2015), human action recognition (Giese and Poggio, 2003; Sigala et al., 2005; Jhuang, 2007;
Kim, Lee, and Yang, 2007; Ji et al., 2013; Simonyan and Zisserman, 2014a; Wang et al., 2014;
Wang, Qiao, and Tang, 2015; Tran et al., 2015; Wang et al., 2015e; Dobhal et al., 2015; Liu
et al., 2015; Cao et al., July, 2016; Mo et al., 2016; Singh, Arora, and Jawahar, 2016), event
detection and crowded scene understanding (Gan et al., 2015; Shao et al., 2015; Castro et al.,
2015; Xiong et al., 2015). In this section, we review CNN-based approaches for the task of
human action recognition.

Early works on CNN-based human action recognition

Early work on applying CNNs was made in 1995 by Nowlan and Platt, 1994 for hand track-
ing and recognizing. In their work, a CNN model with two convolutional windows and a
subsampling layer was proposed to locate the hand and recognize whether it is closed or
open. This architecture achieved a high accuracy on a dataset of 900 video samples. How-
ever, the complex structured backgrounds of images has a significant impact on recognition
accuracy. Inspired by the first CNN model of Fukushima, 1980, Giese and Poggio, 2003
proposed the use of receptive fields to build a hierarchical feedforward architecture for the
recognition of biological movements, such as walking, running or various full-body actions.
In a related study, Sigala et al., 2005 also developed a hierarchical model for detecting a
walker based on the use of neural detectors, which are able to extract motion features with
different levels of complexity. In 2007, Jhuang, 2007 proposed an extension model from the
work of Giese and Poggio, 2003 for the recognition of human actions from video sequences.
FIGURE 3.3 provides details about this architecture. Kim, Lee, and Yang, 2007 also used a
CNN model and a weighted fuzzy min-max neural network (WFMM - Kim, Lee, and Yang,
2006) for human action recognition. The authors used a CNN to generate a set of feature
maps from the pretreated data and a WFMM (Kim, Lee, and Yang, 2006) was used as a
classifier. These early works (Nowlan and Platt, 1994; Giese and Poggio, 2003; Sigala et al.,
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FIGURE 3.3: A CNN-based framework for human action recognition proposed by Jhuang,
2007. Given a gray-value video sequence as input, the first layer S1 locates objects in image
frames by using spatio-temporal filters. Each unit of C1 is computed by applying a local-max
over units of S1 for down-sampling. From C1, a template matching operation is performed
for identifying intermediate-level features. C2 is then constructed by computing the global
max over S2. The high-level features are extracted in S3 through a template matching and
the high-level features C3 are computed from S3 using the same way like computing C2. The
last layer is a linear multi-class SVM classifier that is used to classify actions with features
provided by C3.

FIGURE 3.4: The 3D-CNN architecture for human action recognition proposed by Ji et al.,
2013. The first layer was used to generate multiple channels of information from the input
frames (e.g. the information of gray-level, gradient, or optical flow). The model applied 3D
convolutions for each channel to compute feature maps (C2). The next layer (S3) was ob-
tained by applying subsampling operations on each feature map from (C2). This procedure
was repeated until obtaining feature maps (S5), which was then connected with a full con-
nection layer for classification. The figure was redesigned from Ji et al., 2013.

2005; Jhuang, 2007; Kim, Lee, and Yang, 2007) share the same characteristics – that is, they
are mostly based on simple CNN models with several layers. However, they are important
platforms for the development of the field later.

3D Convolutional Neural Networks (3D-CNNs) for human action recognition in
videos

An important study on applying CNN models for recognizing human actions in videos has
been introduced by Ji et al., 2013. In order to exploit the temporal information of human mo-
tion, the authors used a novel three-dimensional Convolutional Neural Network (3D-CNN)
architecture to learn motion representations. This architecture used 3D kernels in the con-
volution stages to extract motion features from both spatial and temporal dimensions. This
improvement can be applied to contiguous frames in videos to extract multiple features.
FIGURE 3.4 illustrates the 3D-CNN architecture in more detail. Experimental results have
shown that this model outperforms the frame-based 2D-CNN models. Motivated by Ji et al.,
2013, Wang et al., 2014 also built a deep architecture using 3D-CNN that is able to recognize
actions from RGB-D data. Tran et al., 2015 investigated in detail the 3D-CNN models and
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FIGURE 3.5: The 3D-CNN-LTC network proposed by Varol, Laptev, and Schmid, 2018.
Convolutions with 3×3×3 kernels (followed by Max Pooling and ReLU layers) were ap-
plied in the first 5 layers. Network input channels including optical flow or three-channel
appearance (R, G, B) were defined for different temporal resolutions.

showed that it outperforms the 2D-CNNs in modeling human motion information on vari-
ous recognition tasks. Moreover, this study found that the best kernel length for 3D-CNN is
3× 3× 3 size.

A visible disadvantage of 3D-CNNs is the increasing number of parameters of the net-
work. To reduce the complexity of 3D-CNN models, Sun et al., 2015 proposed a factorized
spatio-temporal convolutional network for human action recognition that factorizes the 3D
convolution kernels into 2D spatial kernels and followed by 1D temporal kernels. 3D-CNNs
have also been investigated for action recognition by Varol, Laptev, and Schmid, 2018. The
authors extended 3D-CNNs with long-term temporal convolutions (LTC) to learn motion
representations. FIGURE 3.5 illustrates a 3D-CNN-LTC network. Varol, Laptev, and Schmid,
2018 also demonstrated that the long-term temporal convolutions and low-level represen-
tations (e.g. raw values of video pixels, optical flow) are important for accurate learning of
human action.

Multi-stream Convolutional Neural Networks (Multi-CNNs) for action recognition

The two-stream convolutional network (two-stream CNN) proposed by Simonyan and Zis-
serman, 2014a has shown strong performance for video-based action recognition task. This
model consists of a spatial stream and a temporal stream where each stream is executed
by a CNN. The first stream recognizes actions from a single frame, while the second rec-
ognizes actions from motion information of multi-frame optical flow. These two streams
are then combined for the classification task. Experimental results showed that the two-
stream CNN improves recognition accuracy. This architecture has been seen as the most ef-
fective approach of applying deep learning to action recognition with limited training data.
In Section 3.3.2, readers can find a quantitative performance analysis of action recognition
models based on deep learning where two-stream CNN based approaches play a promi-
nent role. Inspired by the work of Simonyan and Zisserman, 2014a, many two-stream CNN
based approaches have been proposed for solving action recognition problems, e.g. Chéron,
Laptev, and Schmid, 2015, Wang et al., 2016d, Wang et al., 2016a, or Xiong et al., 2016. Un-
like the two-stream architecture developed by Simonyan and Zisserman, 2014a, Liu et al.,
2015 added a module called stCNN (Spatio-Temporal Convolutional Neural Network) to a
standard CNN model for exploiting motion and content-dependent features concurrently.
Experiments on KTH (Schuldt, Laptev, and Caputo, 2004) and UCF-101 (Soomro, Zamir,
and Shah, 2012) datasets showed that the recognition accuracy for motion-content combined
was better when compared with motion alone. Singh, Arora, and Jawahar, 2016 addressed
the problem of understanding egocentric activities by using a three-stream CNN architec-
ture. More specifically, the authors proposed a framework for the recognition of wearer’s
actions. First, a CNN model was trained for learning features from egocentric cues including
hand masks, head motions and saliency maps. Then, the proposed network was extended
by adding two more streams corresponding to spatial and temporal streams. Experiments
showed that the model with more streams was able to improve recognition performance.

In a more recent study, Wang, Farhadi, and Gupta, 2016 divided an input video consisting
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FIGURE 3.6: The Siamese network architecture proposed by Wang, Farhadi, and Gupta,
2016. See text for description.

of t frames X = {x1, x2, ..., xt} into two sets: the precondition state frames Xp = {x1, ..., xzp}
and effect state framesXe = {xze , ..., xt}. A two-stream CNN architecture called Siamese net-
work has been designed for learning human actions (see FIGURE 3.6). The first stream was
trained on the precondition state frames Xp and the second was trained on the effect state
frames Xe. To predict the action classes, the authors applied transformations on the output
features of the precondition stream and compare with the output features provided by the
effect stream. Karpathy et al., 2014 studied the performance of CNNs by trying to predict
and classify on Sports-1M (Karpathy et al., 2014) dataset which consists of more than one
million sport videos. A multi-resolution CNN architecture with two-stream of processing
has been proposed. The results showed that CNNs are capable of learning powerful features
and significantly outperformed hand-crafted features based approaches. Wang et al., 2015d
also proposed the use of multi-CNNs to learn actions from sequences of depth maps. Given
a sequence of depth maps, 3D points are created and three Depth Motion Maps (DMMs) are
constructed by projecting the 3D points to the three orthogonal planes. Three CNNs were
constructed based on AlexNet (Krizhevsky, Sutskever, and Hinton, 2012b) to extract motion
features from each DMM and then classify them into classes.

Among the local space-time features, trajectory-based features are generally considered
to be one of the best ways to describe motion (Wang et al., 2011; Wang and Schmid, 2013;
Beaudry, Péteri, and Mascarilla, 2016). Wang, Qiao, and Tang, 2015 combined the benefits of
improved trajectories (Wang and Schmid, 2013) and a two-stream CNN architecture to de-
sign an effective representation of video feature called “Trajectory-Pooled Deep Convolutional
Descriptor" for human action recognition in videos. Experimental results showed that this
framework has obtained state-of-the-art performance on the UCF-101 (Soomro, Zamir, and
Shah, 2012) and HMDB-51 (Kuehne et al., 2011) datasets. Liu, Liu, and Chen, 2017 used
a two-stream CNN-based model to learn and recognize actions from skeletal data. To this
end, a color encoding method was proposed to map skeleton joints into color images. Visual
and motion enhancement techniques were then exploited to generate more discriminative
features in obtained images. This method eliminated the effect of view variations, while
achieved high performance levels and required less computation for the training phase. Ke
et al., 2017 also exploited multiple-stream CNN to learn motion features from skeleton se-
quences. Unlike Liu, Liu, and Chen, 2017, the authors generated three clips corresponding
to the three 3D coordinates of the skeleton joints. For each clip, the relative positions of joints
were computed and fed directly into three pre-trained CNN models. This work also indi-
cated that the performance of the proposed model will decrease when concatenating three
gray clips into one single color clip. Most recently, Tran and Cheong, 2017 showed that we
can improve performance of the two-stream CNN models by sharing information between
two streams during the training phase. More details are shown in FIGURE 3.8. Most recently,
Carreira and Zisserman, 2017 introduced a two-stream CNN model based on Inception-
v1 (Ioffe and Szegedy, 2015), namely “Two-Stream Inflated 3D ConvNets (I3D)” to learn the
spatio-temporal features of human actions. By inflating 2D-CNN into 3D and bootstrapping
3D filters from 2D filters to build very deep CNN architectures, the proposed I3D network
showed its state-of-the-art performance on UCF-101 (Soomro, Zamir, and Shah, 2012) and
HMDB-51 (Kuehne et al., 2011) datasets.
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FIGURE 3.7: A deep learning architecture for action recognition proposed by Wang, Qiao,
and Tang, 2015. Given an input video, the model extracted motion trajectories. Multi-scale
convolutional feature maps were extracted by a CNN at the same time. Trajectory pooled
Deep-convolutional Descriptors (TDDs) were then estimated from a set of improved trajec-
tories and convolutional feature maps.

FIGURE 3.8: Two-stream CNN framework for action recognition proposed by Tran and
Cheong, 2017. Two streams of RGB frames and optical flows are fed into two separate
CNNs, in which the spatial stream models scene and object contexts, while the temporal
stream provides some motion-based attentions on foreground actions. The leverage atten-
tions provided by temporal stream is shared to assist recognition processes in spatial-stream
via cross-link layers.
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Very deep Convolutional Neural Networks (D-CNNs) for action recognition

Very deep convolutional neural networks such as VGG-Net (Simonyan and Zisserman, 2014b),
GoogLeNet (Szegedy et al., 2015a) have achieved significant success for many object recogni-
tion and classification tasks. Several authors started to exploit these architectures for action
recognition problems. For instance, Wang et al., 2015c introduced a very deep two-stream
CNN for action recognition based on VGG-16 and GoogLeNet (Szegedy et al., 2015a). Fe-
ichtenhofer, Pinz, and Zisserman, 2016 proposed a two-stream CNN architecture in which
the deep CNN model VGG-M-2048 (Chatfield et al., 2014) and very deep model VGG-16
(Simonyan and Zisserman, 2014b) have been used. The performance comparison between
VGG-M-2048 and VGG-16 models on the UCF-101 (Soomro, Zamir, and Shah, 2012) and
HMDB-51 (Kuehne et al., 2011) datasets showed that using of deeper networks helps to
improve learning performance (see TABLE 3.3). In addition, GoogLeNet (Szegedy et al.,
2015a) and VGG-Net (Simonyan and Zisserman, 2014b) have also been used to design the
two-stream CNN in the work of Wang et al., 2015b. Fernando et al., 2016 trained VGG-16
(Simonyan and Zisserman, 2014b) on HMDB-51 (Kuehne et al., 2011), UCF-101 (Soomro,
Zamir, and Shah, 2012) and Hollywood-2 (Marszalek, Laptev, and Schmid, 2009) datasets to
obtain motion features for an action recognition task. These features were then encoded by
a method called “Hierarchical Rank Pooling”. This framework allows encoding the temporal
dynamics of a video sequence for action recognition. Specifically, a video sequence was en-
coded at multiple levels and the output of each level is a sequence of vectors that captures
higher-order dynamics of its previous level. The final representation was used to train an
SVM classifier for classification of actions. The residual learning (ResNet - Kaiming et al.,

TABLE 3.3: Performance comparison of VGG-M-2048 with VGG-16 on the UCF-101 and
HMDB-51 datasets, reported by Feichtenhofer, Pinz, and Zisserman, 2016.

Dataset UCF-101 HMDB-51

Model VGG-M-2048 VGG-16 VGG-M-2048 VGG-16

Spatial 74.22% 82.61% 36.77% 47.06%

Temporal 82.34% 86.25% 51.50% 55.23%

Spatio-Temporal 85.94% 90.62% 54.90% 58.17%

2016), a state-of-the-art CNN and one of the deepest CNN models at the moment2 has been
exploited for human action recognition. For example, Feichtenhofer, Pinz, and Wildes, 2016
suggested to use 50-layer ResNets to design a two-stream CNN. Their experiments showed a
state-of-the-art performance on the UCF-101 (Soomro, Zamir, and Shah, 2012) and HMDB-51
(Kuehne et al., 2011) datasets. Based on the success of the previous two-stream ResNet (Fe-
ichtenhofer, Pinz, and Wildes, 2016), Feichtenhofer and colleagues continued to exploit very
deep CNN networks for building two-stream multiplier networks (Feichtenhofer, Pinz, and
Wildes, 2017). ResNet-50 and ResNet-152 networks have been used to learn motion features
from appearance and motion streams and reported excellent performances on the UCF-101
(Soomro, Zamir, and Shah, 2012) and HMDB-51 (Kuehne et al., 2011) datasets. However, it
is clear that very deep CNN based frameworks require much computation resource to train
and optimize.

3.2.3 Human action recognition based on RNNs

As pointed out in the previous chapter, the main advantage of RNN-LSTMs is the capacity to
model long-term contextual information of temporal sequences. This advantage puts RNN-
LSTM at one of the best sequence learners for time-series data, including visual information
of human action. Many RNN-based action recognition approaches have been proposed and
reported their promising performances in the literature. For instance, Du, Wang, and Wang,
2015, Song et al., 2017, Zhu et al., 2016b, Li et al., 2016b, and Liu et al., 2016b used RNN-
LSTM networks to model human motions from skeleton sequences provided by depth sen-
sors. These approaches share the same strategy, in which RNN-LSTMs learn directly motion

2The year 2016.
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FIGURE 3.9: A two-stream RNN for skeleton-based action recognition by Wang and Wang,
2017. See text for description.

features and classify them into classes from 3D geometric features of skeletons. Experiments
on the state-of-the-art benchmark datasets demonstrated the effectiveness of these methods.
Like CNN-based methods, two-stream RNN has also been exploited for action recognition,
e.g. Wang and Wang, 2017 presented a two-stream RNN to model spatial and temporal dy-
namics of human motion from skeleton sequences. As shown in FIGURE 3.9, the temporal
stream used a RNN to learn the temporal dynamics from the 3D coordinates of joints over
time. At the same time, another RNN was used to learn the spatial dependency of joints. The
two streams were then combined by late fusion for recognition task. Zhu et al., 2016b also
proposed the use of a deep LSTM to learn human action from skeletons. Instead of feeding
all skeleton joints into the network, the authors defined the co-occurrence of some key joints
that can intrinsically characterize the human actions and then modeled these co-occurrence
features by RNN-LSTM networks for recognizing actions. In addition, to prevent overfitting
for the deep LSTM network, a new dropout technique was introduced. The new dropout
layer allows the dropping of the internal gates, cell and output response for each LSTM neu-
ron. Experimental results showed that this architecture helped learning better parameters.
Recently, Liu et al., 2017c introduced a “Global Context-Aware Attention LSTM (GCA-LSTM)”
– a new class of LSTM network for skeleton-based action recognition. The GCA-LSTM con-
sists of two LSTM layers, in which the first layer encodes each skeleton sequence into a global
context memory. The second layer learns attention from the original sequence with the as-
sistance of the global context memory. This process is then repeated to generate the global
contextual information for classification task. Lee et al., 2017 proposed ensemble Temporal
Sliding LSTM networks for action recognition from skeletal data. As shown in FIGURE 3.10,
the coordinates of input skeleton sequences were transformed so that the data can be robust
to scale, rotation and translation. Then, the motion features were employed and processed
with multi-term LSTMs containing short-term, medium-term and long-term LSTMs. Exper-
imental results showed that the proposed feature representation and temporal sliding LSTM
networks dramatically enhanced the performance of action recognition.

One drawback with RNN-LSTMs based approaches is that, LSTMs are composed of
many parameters per unit. It makes these models more complex in terms of computational
complexity, specially in performing action recognition on very large-scale datasets that could
easily lead to the problem of vanishing gradients3.

3.2.4 Fusion of CNNs with LSTM units for human action recognition

As discussed in earlier sections, CNNs have shown their effectiveness in learning spatial
features. Meanwhile, RNN-LSTMs are able to effectively model the temporal information
of human actions. Therefore, the studies of Baccouche et al., 2011, Ng et al., 2015, Donahue
et al., 2015, Sharma, Kiros, and Salakhutdinov, 2015, Ibrahim et al., 2016a, Singh et al., 2016,
Li et al., 2016a, Wu et al., 2016, and Wang et al., 2016e tackled the question of understanding
human actions by combining CNNs and RNN-LSTMs for building more powerful action

3As more layers using certain activation functions are added to neural networks, the gradients of
the loss function approaches zero, making the network hard to train.
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FIGURE 3.10: The main four phases of the proposed ensemble deep learning LSTM by Lee
et al., 2017. See text for description.

FIGURE 3.11: A deep learning framework that combines CNNs and LSTMs for action
recognition proposed by Donahue et al., 2015. The proposed framework processes the visual
input with CNNs, whose outputs are then fed into LSTMs, which finally produce a variable-
length prediction. Both the CNN and LSTM weights are shared during the training phase.

recognition frameworks. The general idea of these works is to use the standard CNN mod-
els such as AlexNet (Krizhevsky, Sutskever, and Hinton, 2012b), VGGNet (Simonyan and
Zisserman, 2014b), or GoogLeNet (Szegedy et al., 2015a) for extracting motion features from
input video. Then, LSTMs were connected to the output of the CNNs to classify sequences
using learned features. FIGURE 3.11 shows a typical example of using CNNs and LSTMs for
action recognition task.

Recently, the trend of combining CNNs and LSTMs continues to receive attention (Ali-
akbarian et al., 2017; Du, Wang, and Qiao, 2017; Sun et al., 2017; Zhu, Vial, and Lu, 2017).
For example, Aliakbarian et al., 2017 exploited three-stream CNN-LSTM to predict actions
very early in videos. This model extracted the contextual information and then combined
with local action information (see FIGURE 3.12). To predict the correct action classes as early
as possible, a new loss function for action anticipation has been introduced. Du, Wang, and
Qiao, 2017 introduced an end-to-end recurrent network for action recognition, which is in
fact a CNN-LSTM network. Each video frame was fed into a CNN to extract features. A
pose attention mechanism and the previous hidden stage of LSTM network were used to
learn body part features from CNN features. These features were combined by a pooling
layer and fed into LSTM for action recognition. Sun et al., 2017 also proposed a new exten-
sion of LSTM architecture to learn action patterns using multiple modalities, i.e. RGB frames
and optical flow. The proposed architecture, namely L2STM, is a two-stream LSTM with
control gates that allows sharing of features between two streams. In each stream, a CNN
was used to produce high-level feature maps before feeding them into LSTMs. In another
study, Mahasseni and Todorovic, 2016 used a parallel architecture to recognize actions with
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FIGURE 3.12: Overview of three-stream CNN-LSTM framework proposed by Aliakbar-
ian et al., 2017. Given a small portion of a video, the first stage of the network focuses on
extracting global, context-information. The second stage extracts local, action-aware infor-
mation where the action occurs and then combine with obtained context-information.

FIGURE 3.13: A parallel deep learning architecture with RNN-LSTM proposed by Mahas-
seni and Todorovic, 2016. See text for detail.

multi-source data. More specifically, a RNN-LSTM was trained in an unsupervised manner
on 3D human skeleton sequences. At the same time, another RNN-LSTM with a CNN was
trained on 2D videos. The outputs were then compared to improve the ability of the system.
CNN-LSTM based networks have also been used to analyze collective activities (Ibrahim
et al., 2016b; Wang, Ni, and Yang, 2017). For instance, Ibrahim et al., 2016b presented a hier-
archical model based on CNN-LSTM for group activity recognition. Given a set of detected
and tracked people in videos, each person was fed into a CNN, followed by a LSTM layer to
model individual action. The outputs of all LSTM layers were then fed to a pooling layer and
a group level LSTM layer to recognize the whole action. More recently, Wang, Ni, and Yang,
2017 proposed a recurrent interactional context encoding framework based on CNN-LSTM
to model three levels of interaction, including single actions, group human interactions, and
group to group interactions. Specifically, given tracklets of a group of persons, each tracklet
was fed into a CNN to learn motion features. A LSTM network was connected to each CNN
to model single action. To model group level interaction, the authors utilized a context en-
coder by combining the outputs of single person level LSTM networks. Finally, the encoding
results were fed into other LSTM networks to identify group to group interaction.
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FIGURE 3.14: An overview of the DBN architecture for human action recognition proposed
by Foggia et al., 2014. Three derived images (ADI, MHI, and DDI) were computed from
depth images and fed into the first level of the network. More abstract representations were
then obtained at higher levels. Finally, the classification was done by using a feed-forward
neural network.

3.2.5 Human action recognition based on DBNs

DBNs have become popular deep learning models after the key paper by Hinton, Osindero,
and Teh, 2006 was presented in 2006. A comparative evaluation by Tang, 2008 showed that
DBNs seem ideal for semi-supervised learning, in which we do not need much labeled data.
Early work on DBNs was successfully applied for handwritten digits recognition (Hinton,
Osindero, and Teh, 2006) and object recognition (Nair and Hinton, 2009; Lee et al., 2009). In
2007, Taylor, Hinton, and Roweis, 2007 extended the RBM model by connecting two more
visible layers to the hidden layer for modeling human motion. The new model, called the
conditional RBM (cRBM) allows to find a single set of parameters that simultaneously cap-
ture several different kinds of motion after training on skeleton sequences. Then, the authors
successfully constructed a DBN from cRBMs. Experiments on two motion datasets have
demonstrated that this model is able to effectively learn different kinds of action, as well as
the transitions between these kinds. In another research, Zhang et al., 2014 used a modified
DBN model for recognizing human actions in real-time from skeleton data. To achieve this
goal, the authors used cRBMs as proposed by Taylor, Hinton, and Roweis, 2007 to create the
new DBN architecture with two hidden layers. The proposed model was trained and tested
by using the skeletal representation of MSR Action3D (Li, Zhang, and Liu, 2010) and MIT
datasets (Hsu, Pulli, and Popović, 2005). The obtained results showed that the recognition
accuracy depends on the number of frames. For example on the MIT datasets (Hsu, Pulli,
and Popović, 2005), the accuracy when using one frame is 98.34%. Meanwhile, the accuracy
can reach 100% when the number of frames is more than 30.

Foggia et al., 2014 proposed a DBN-based method for recognizing human actions with
depth images. A DBN model was constructed as shown in FIGURE 3.14. Three types of well-
known feature including the Average Depth Image (ADI), Motion History Image (MHI),
and Depth Difference Image (DDI) were computed and encoded as low-level data repre-
sentations in the first layer. The high-level representations were then extracted by the pro-
posed model for the recognition task. Experimental results on MIVIA (Foggia et al., 2013)
and MHAD (Ofli et al., 2013) datasets are very promising. Ali and Wang, 2014 presented a
framework based on DBN to recognize and identify human actions. To speed up learning
time, the Fast Fourier Transform (FFT – Heckbert, 1995) was used for converting images to
the frequency domain. The model was first pre-trained with KTH dataset (Schuldt, Laptev,
and Caputo, 2004) and then exploited to predict actions.
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3.2.6 Human action recognition based on SDAs

As pointed out Chapter 2, SDAs can be trained to reconstruct the input from a corrupted
version of it. The first successful application based on the encoder-decoder model was pre-
sented in 2007 by Huang, Boureau, and LeCun, 2007 for object recognition tasks. Based
on the principle of this model, Moez et al., 2012 proposed a solution for learning of sparse
spatio-temporal features of human motions based on an autoencoder. Experiments on the
KTH (Schuldt, Laptev, and Caputo, 2004) and GEMEP-FERA (Valstar et al., 2011) datasets
showed a comparable performance to methods using hand-crafted features. Some other
autoencoder-based approaches have also been proposed in the works of Wu et al., 2014, Xie
et al., 2014, Hasan and Roy-Chowdhury, 2014. For instance, Wu et al., 2014 constructed a
3-layer SDA architecture for human action recognition using skeleton information captured
by a Kinect sensor. To recognize human actions, Xie et al., 2014 used an SDA architecture
with 3-hidden layers to learn contour features from a single depth frame. The obtained
high-level features were then used for the classification task. Hasan and Roy-Chowdhury,
2014 presented an autoencoder-based framework for learning to recognize human actions
from streaming videos, also called “Online Action Recognition – OAR”. This method was ex-
ecuted through two phases: “initial learning" and “incremental learning". Specifically, given
a streaming video with a few labeled actions, the first phase extracted space-time interest
points (STIP – Laptev, 2005) of the motions. These features were then encoded by a sparse
autoencoder, followed by a softmax layer for classification. To recognize human actions
in unlabeled frames, the incremental learning phase used the sparse autoencoder and the
learned parameters in the initial learning phase, but in an unsupervised manner. In addi-
tion, the authors also used an active learning technique to reduce the amount of manual
labeling of classes. Recently, Shahroudy et al., 2017 introduced a new deep autoencoder to
learn RGB and depth features in videos. Each layer of the proposed architecture is an autoen-
coder based on component factorization unit, which was used to extract multimodal input
features into modality-specific parts. Each input modality has specific features that carry
discriminative information for the recognition task. Through experiments, Shahroudy et al.,
2017 showed that the proposed deep autoencoder outperforms many approaches based on
single modality.

The long training time is a disadvantage of SDAs when dealing with large-scale prob-
lems. To overcome this limitation, Chen et al., 2012 proposed a novel variant of SDAs,
namely “mSDA". Experiments on the same dataset showed that mSDA matched the per-
formance of SDA, whilst reducing the training time down to 450 times. Taking advantages
of the mSDA, Gu et al., 2015 trained an mSDA network for multi-view action recognition.
An mSDA was trained over all the camera views and the trained model was used to gener-
ate features for each camera view respectively. These obtained features from all the camera
views were then combined to create a single integrated representation and then be used as
the input of a classifier. The evaluation on three multi-view action datasets provided that
this model achieved state-of-the-art recognition performance.

3.2.7 GANs for human action recognition

So far in the research community, GANs (Goodfellow et al., 2014) have been primarily used
for sample generation. However, they can be exploited for learning video representations
and applied for human action recognition in videos. For instance, Vondrick, Pirsiavash,
and Torralba, 2016 capitalized on recent advances in GANs for both action classification
and prediction in videos. A two-stream generative model has been built for learning scene
dynamics. This study is an open research opportunity for designing predictive models for
understanding human actions because determining when an action may occur in a continu-
ous video is a big challenging task. Yeung et al., 2016 presented the first end-to-end approach
for learning to detect actions in videos. The network that takes a long video as input, and
outputs the temporal bounds of detected action instances. More specifically, the proposed
network consists of two main components: an observation network and a recurrent network.
The observation network encodes visual representations of video frames. Meanwhile, the re-
current network sequentially processes these observations and decides both which frame to
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FIGURE 3.15: An overview of the GAN-based approach to learn action representation
proposed by Ahsan, Sun, and Essa, 2018. See text for more detail.

observe next and when to emit a prediction. Li et al., 2017c used a Conditional Generative
Adversarial Network (cGAN – Mirza and Osindero, 2014) to localize an action by generat-
ing its action mask. The generated masks were then used as an additional channel for learn-
ing motion features and recognition. Most recently, Ahsan, Sun, and Essa, 2018 exploited
GAN to learn action representations in videos with little to no supervision information. To
this end, the authors trained a Deep Convolutional Generative Adversarial Network (DC-
GAN) (Radford, Metz, and Chintala, 2015) on a large video action dataset in an unsupervised
manner. To recognize human actions, the pre-trained discriminator network from the GAN
framework was fine-tuned on another dataset with supervision information (FIGURE 3.15).
Competitive performance on the HMDB-51 dataset (Kuehne et al., 2011) proved that GANs
are able to capture enough information to learn useful representations of human actions in
videos. Although GANs have shown big potentials in learning video representations, the
big disadvantage of GANs is that, these networks are very hard to train and requires a lot of
trial-and-error regarding the network structure and training methodology.

3.2.8 Other deep architectures for human action recognition

Some other deep architectures have also been used for human action recognition and re-
lated recognition tasks such as group activity analysis, or prediction of physical interactions.
Sparse coding (Olshausen and Field, 1996; Lee et al., 2006; Yu, Lin, and Lafferty, 2011) is
also another potential deep model for recognizing human action.The success of sparse rep-
resentation in various fields including pattern recognition (Raina et al., 2007; Yang, Yu, and
Huang, 2010) or image classification (Yang et al., 2009) have shown that it could flexibly
adapt to diverse low level natural signals. The sparse representations of the signals are then
used as image features that are sent directly into the classifiers. Therefore, many authors
(Zhu et al., 2010; Lu and Peng, 2013; Guha and Ward, 2012; Alfaro, Mery, and Soto, 2016)
have exploited the advantages of sparse coding for solving human action recognition prob-
lems. Later, some novel deep architectures for action recognition have been published in the
literature (Ullah and Petrosino, 2015; Ullah and Petrosino, 2016; Rahmani, Mian, and Shah,
2018). For instance, Ullah and Petrosino, 2015 employed a CNN and a pyramidal neural
network (PyraNet – Phung and Bouzerdoum, 2007) to recognize human action. A strict 3D
pyramidal neural network called “3DPyraNet” was constructed that allows to learn spatio-
temporal features of human motions. These works continued to be expanded by the same
authors (Ullah and Petrosino, 2016) and achieved competitive results on some action bench-
mark datasets. Rahmani, Mian, and Shah, 2018 presented the “Robust Non-Linear Knowledge
Transfer Model (R-NKTM)" – a deep fully-connected neural network that is capable of un-
derstanding human action from cross-views. The proposed framework learned the motion
features from both dense trajectories of synthetic 3D human models and real motion capture
data. FIGURE 3.16 illustrates the architecture of this framework. Experiments on cross-view
human action datasets including IXMAS (Weinland, Ronfard, and Boyer, 2006), UWA3DII
(Rahmani et al., 2016), Northwestern-UCLA Multiview Action3D dataset (Wang et al., 2014),
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FIGURE 3.16: Illustration of the architecture of R-NKTM and its training process (Rahmani,
Mian, and Shah, 2018). Firstly, 3D human models are fitted to real motion capture data for
generating realistic 3D videos. These 3D videos are then projected on 2D planes to calculate
dense trajectories. A general codebook is learned from trajectories that is then used as the
input of R-NKTM. By this way, the R-NKTM can learn features of human motions and use
them for recognizing actions.

and UCF Sports (Rodriguez, Ahmed, and Shah, 2008) have indicated that this architecture
outperformed previous state-of-the-art approaches. In another study, Srivastava, Mansi-
mov, and Salakhudinov, 2015 constructed a model which consists of two LSTMs, including
an encoder LSTM and a decoder LSTM to learn representations of sequences of images. The
state of the encoder is the representation of the input video. Then, the LSTM decoder will
reconstruct the input sequence from this representation. It can be used for reconstructing
the input sequences as well as predicting the future sequences. Very recently, Luo et al.,
2017 combined many different models to build a deep learning framework for recognizing
human motion in videos. The proposed deep architecture is able to predict the future 3D
motions in videos (see FIGURE 3.17). Specifically, given input frames, the model predicts
3D flows in future frames, then uses these features to recognize actions. To do that, a RNN
based Encoder-Decoder framework has been proposed. During the encoding process, VGG-
16 networks (Simonyan and Zisserman, 2014b) were used to extract a low-dimensionality
features from the input frames. Then, the LTSMs have been exploited to learn the temporal
representations of motions. The learned representations were then decoded in the decoding
process to generate the atomic 3D flows. This approach achieved the state-of-the-art accu-
racy rate on the NTU-RGB+D dataset (Shahroudy et al., 2016) and MSR Daily Activity3D
(Li, Zhang, and Liu, 2010). Most recently, Lea et al., 2017 presented a class of time-series
models, called Temporal Convolutional Networks (TCNs) for action recognition. The key
advantage of TCNs is the ability to capture long-range patterns using a hierarchy of tem-
poral convolutional filters. Experimental results showed that TCNs outperformed strong
baselines including Bidirectional LSTM, whilst requiring less time to train. Kim and Reiter,
2017 also used TCNs to learn spatio-temporal representations for 3D human action recogni-
tion. Unlike the original architecture proposed by Lea et al., 2017, Kim and Reiter, 2017 re-
designed TCNs by factoring out the deeper layers into additive residual terms which yields
both interpretable hidden representations and model parameters. Experiments showed that
the new design of TCN is able to produce discriminative spatio-temporal features for 3D
human action analysis.
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(a) (b)

FIGURE 3.17: (a) Illustration of the idea of learning a video representation by predicting a
sequence of basic motions described as atomic 3D flows (Luo et al., 2017). The learned repre-
sentations are then used for action recognition. (b) The proposed deep learning framework
by Luo et al., 2017 using Recurrent Neural Network based Encoder-Decoder to predict the
atomic 3D flows.

3.3 Discussion

In recent years, video-based human action recognition has become one of the most active
research topics in computer vision. In particular, the appearance of the deep learning models
as well as the advances of parallel computing techniques have opened up new opportunities
for advancing the state-of-the-art in understanding human action in videos. Many deep
learning-based approaches have been developed for various applications related to action
recognition. In this section, we provide a detailed analysis of the mentioned architectures
in this chapter. The pros and cons of each class and the link between them will also be
discussed. Based on these analyses, we point out challenges, current trends and potential
directions for future research in this field.

3.3.1 Current state of deep learning architectures for action recognition

Human action recognition in videos has advanced rapidly from the recognition of actions
in controlled environment with small size benchmark datasets to the recognition of actions
in realistic videos with very large-scale benchmarks. In this progress, deep learning algo-
rithms have played an important role. In the literature of human action recognition based
on deep learning, CNNs seem to be the most important model for learning spatio-temporal
features of human action directly from videos, especially multi-stream CNN models. Some
outstanding architectures have been proposed such as Ji et al., 2013, Tran et al., 2015, Si-
monyan and Zisserman, 2014a, Wang et al., 2017a, Feichtenhofer, Pinz, and Wildes, 2016,
and Luo et al., 2017. The key ideas behind CNNs allow them to work directly on image
structure and to obtain high-level features by composing lower-level ones. Not only work-
ing as an end-to-end solution, CNNs were also used as a feature extractor and were a part
in another framework, in particular with RNN-LSTM networks. Although CNNs achieved
excellent performances on various action recognition task, they require large datasets to op-
timize despite the fact that some techniques have been developed to prevent overfitting, e.g.
Dropout (Srivastava et al., 2014) or data augmentation. In addition, training a very deep
CNN architecture requires much computation. Therefore, applying very deep CNNs for hu-
man action recognition tasks is still a big challenge.

Recurrent Neural Networks with Long Short-Term Memory units (LSTM-RNNs) have
been designed for solving time series problems. LSTM-RNNs have been used successfully
in modeling the long-term context information of motion sequences, specifically with skele-
ton data as the works of Du, Wang, and Wang, 2015, Song et al., 2017, Zhu et al., 2016b, Li
et al., 2016b, or Liu et al., 2016b. The success of LSTM-RNNs for human action recognition
comes from their ability to take advantage of the entire history motion frames. Even so, most
of LSTM-RNN based models cannot work directly on raw data. For example, skeleton data
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FIGURE 3.18: Comparison of action recognition accuracy (%) of different deep learning
based approaches reported on the HMDB-51 (Kuehne et al., 2011) and UCF-101 (Soomro,
Zamir, and Shah, 2012) datasets.

need to be preprocessed before feeding into LSTM-RNNs. The combination of CNNs and
LSTMs is an excellent example of how we can build more powerful deep learning models by
taking advantages of different architectures. In this case, CNNs were used to extract high-
level motion features from videos, whilst LSTMs were exploited for sequences learning and
prediction.

Deep Belief Network (DBNs) and Stacked Denoising Autoencoders (SDAs) are also pro-
mising choices for human action recognition tasks. For DBNs, these networks can be trained
in an semi-supervised way with less labeled data. The limitation of DBNs is that, they re-
quire hand-crafted features (Foggia et al., 2014) or converting input data to appropriate form
(Ali and Wang, 2014). Meanwhile, SDAs can learn motion features in unsupervised manner
and are capable of generating robust features. However, they have several drawbacks re-
lated to their optimization process. In addition, action recognition approaches based on the
recently introduced Generative Adversarial Networks (GANs) have also showed big poten-
tials for learning and recognizing human actions in a semi-supervised manner, despite that
they are difficult to train.

3.3.2 A quantitative analysis on HMDB-51, UCF-101 and NTU+RGB-D

To evaluate the learning performance of deep architectures in modeling and recognizing hu-
man actions, we provide a quantitative analysis of the different deep learning approaches
on three state-of-the-art human action datasets, including HMDB-51 (Kuehne et al., 2011),
UCF-101 (Soomro, Zamir, and Shah, 2012), and NTU-RGB+D (Shahroudy et al., 2016). We
choose to analyze these benchmarks due to two main reasons. First, all these benchmarks
are challenging, large-scale datasets for human action analysis. That allows us to evaluate
state-of-the-art approaches. Second, these benchmarks have been used to evaluate the ef-
fectiveness of many different deep learning models, involving approaches based on CNNs,
RNN-LSTMs, CNN-LSTMs and some other deep architectures.

Recognition performance on HMDB-51 and UCF-101 datasets

FIGURE 3.18 shows a comparison of the performance of many different deep learning ar-
chitectures on the HMDB-51 (Kuehne et al., 2011) and UCF-101 (Soomro, Zamir, and Shah,
2012) datasets that have been reviewed in this chapter. In this comparison, accuracy rates
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FIGURE 3.19: Comparison of action recognition accuracy (%) of different methods reported
on the NTU-RGB+D dataset (Shahroudy et al., 2016).

are reported directly from the original papers and all of these works used the same eval-
uation protocol. The comparison results help us to identify the current state-of-the-art ar-
chitectures proposed in the literature for action recognition. More specifically, we found
that many approaches get similar recognition accuracy, but the multi-stream CNN based
approaches proposed by Feichtenhofer, Pinz, and Zisserman, 2016; Wang et al., 2016a; Fe-
ichtenhofer, Pinz, and Wildes, 2017; Carreira and Zisserman, 2017 outperformed many other
deep learning-based approaches. The best performing method on these datasets is currently
the two-stream 3D-CNN, called “Two-Stream Inflated 3D ConvNets (I3D)” proposed by Car-
reira and Zisserman, 2017, with an accuracy of 80.7% on HMDB-51 (Kuehne et al., 2011) and
98.0% on UCF-101 (Soomro, Zamir, and Shah, 2012), respectively. The special deep architec-
ture called shuttleNet (Shi et al., 2017) has also achieved an excellent performance, 71.7% on
the HMDB-51 (Kuehne et al., 2011) and 95.4% on the UCF-101 (Soomro, Zamir, and Shah,
2012).

Recognition performance on NTU-RGB+D dataset

The NTU-RGB+D dataset (Shahroudy et al., 2016) is a very large-scale dataset for human ac-
tion recognition (see APPENDIX A). To the best of our knowledge, this is currently the largest
dataset that contains both RGB, depth and skeleton data. The NTU-RGB+D (Shahroudy et
al., 2016) provides more than 56K videos, collected from 40 subjects and 80 viewpoints for
60 action classes. In order to evaluate the recognition performance on this benchmark, two
different evaluation protocols have been suggested, including Cross-Subject evaluation and
Cross-View evaluation. For the Cross-Subject evaluation, all sequences performed by 20 sub-
jects are used for training and the rest are used for testing. For Cross-View evaluation, all
sequences provided by cameras 2 and 3 are used for training while sequences from camera
1 are used for testing. TABLE 3.4 shows the classification accuracies of five groups of meth-
ods on this dataset, including hand-crafted based methods (Oreifej and Liu, 2013; Yang and
Tian, 2014; Ohn-Bar and Trivedi, 2013; Evangelidis, Singh, and Horaud, 2014; Vemulapalli,
Arrate, and Chellappa, 2014; Cippitelli et al., 2016a; Hu et al., 2015a), CNN-based meth-
ods (Misra, Zitnick, and Hebert, 2016; Rahmani and Bennamoun, 2017; Ke et al., 2017; Li
et al., 2017a; Pham et al., 2018b; Liu, Liu, and Chen, 2017), RNN-based methods (Du, Wang,
and Wang, 2015; Shahroudy et al., 2016; Luo et al., 2017; Liu et al., 2016b; Song et al., 2017;
Zhang, Liu, and Xiao, 2017; Lee et al., 2017), CNN+RNN-based methods (Li et al., 2017b;
Zhao, Ali, and Smagt, 2017) and some others (Shahroudy et al., 2017; Kim and Reiter, 2017).
It is clear that the deep learning-based approaches outperformed many hand-crafted based
approaches. In addition, CNN-based models works better than RNN-based models, while
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the CNN+RNN-based frameworks seem the most powerful architectures for modeling hu-
man actions in videos. Specifically, we observe that the best performing method on the
NTU-RGB+D (Shahroudy et al., 2016) is currently a deep framework based on a two-stream
RNN+CNN model proposed by (Zhao, Ali, and Smagt, 2017). They achieved an accuracy of
83.74% on Cross-Subject settings and 93.65% on Cross-View settings, respectively.

3.3.3 The future of deep learning for video-based human action recogni-
tion

Unsupervised learning models for action recognition

Learning features directly from unknown videos in an unsupervised manner is a very im-
portant research direction (LeCun, Bengio, and Hinton, 2015) as labeled data is usually ex-
pensive and hard to obtain. The success of unsupervised learning methods based on DBNs
or deep autoencoders such as the works of Foggia et al., 2014, Ballan et al., 2012, or Hasan
and Roy-Chowdhury, 2014 has shown that unsupervised learning methods can achieve a
high-level of performance without requiring labeled data or requiring very limited labeled
data. Many other unsupervised representation learning approaches such as Misra, Zitnick,
and Hebert, 2016, Rahmani, Mian, and Shah, 2018 or Luo et al., 2017 have also achieved im-
pressive performances on realistic video datasets for action recognition. Due to big poten-
tials in learning representations with unlabeled data, we expect that unsupervised learning
approaches will continue to be extended for analyzing human actions in videos and advance
the state-of-the-art of this field.

Deeper networks

The success of some very deep CNN architectures such as VGG-Net (Simonyan and Zis-
serman, 2014b), GoogLeNet (Szegedy et al., 2015a), and ResNet (Kaiming et al., 2016) pro-
vided that deeper models can boost the recognition performance. In particular, very deep
architectures such as ResNet (Kaiming et al., 2016) and DenseNet (Huang et al., 2017) with
shortcut connections in their architectures, are able to effectively learn visual features from
data and prevent overfitting, whilst requiring less computation to achieve high performance
for recognition tasks. Therefore, we expect very deep CNN architectures will be more fully
exploited in this field. We also look forward to applications of Capsule Networks (Sabour,
Frosst, and Hinton, 2017) – a new state-of-the-art CNN model for visual recognition in solv-
ing the action recognition related problems.

Combining different deep learning architectures

Taking full advantage of the different deep learning architectures and combining them into
a single deep learning framework is a trend in action recognition. Specifically, the use of
CNNs with LSTM-RNNs to model both the spatial and temporal information of human
motions has improved the state-of-the-art in many human action datasets (Baccouche et al.,
2011; Ng et al., 2015; Donahue et al., 2015; Sharma, Kiros, and Salakhutdinov, 2015; Ibrahim
et al., 2016a; Singh et al., 2016; Li et al., 2016a; Wu et al., 2016; Wang et al., 2016e). We believe
that this will be continued in the future, in which focusing on some very difficult topics such
as online action recognition or early action prediction from streaming videos.

Fusion of hand-crafted features and deep learning

We also found that hand-crafted features such as the trajectory descriptors or optical flow
based features have been used in most of state-of-the-art deep learning models as reported
in the works of Varol, Laptev, and Schmid, 2018, Feichtenhofer, Pinz, and Zisserman, 2016,
Tran et al., 2015, or Wang, Farhadi, and Gupta, 2016. We expect much of future progress
in human action recognition to come from systems that exploit both hand-crafted and deep
learning solutions to solve challenges of the field.
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Transfer learning for human action recognition

One of the main difficulty in training deep networks comes from the scarcity of data. Su-
pervised learning models such as CNNs require a lot of labeled data to optimize. In almost
domains, acquiring and labeling for large-scale datasets are costly and time-consuming, in
particular in the medical field. To solve this problem, some authors explored the transfer
learning technique. In computer vision, many visual categories share low-level notations of
edges, visual shapes, etc. Hence, instead of training an entire deep network from scratch,
we can pretrain the network on a large-scale dataset such as ImageNet (Rahmani and Mian,
2016) or from existing datasets, and then use the network as an initialization for the task
of interest. In action recognition, more and more promising results were achieved by deep
learning models using transfer learning, e.g. Rahmani, Mian, and Shah, 2018, Liu et al.,
2016a, Xu et al., 2016, Sargano et al., 2017, and recently by Rahmani and Bennamoun, 2017.
Due to many advantages of transfer learning in video-based human action recognition, we
believe that this research direction will continue to receive much attention from researchers
for the next years.

New motion representations for deep learning-based action recognition from RGB-
D data

Almost deep learning models are designed to learn and recognize human motions from
RGB and optical flow, where they are fed directly into deep networks. This seems that has
changed as more and more new motion representations have been proposed. For example,
Scene Flow to Action Map (SFAM) by Wang et al., 2017b, human pose representation by
Rahmani and Mian, 2016, or encoding skeleton sequences into color images such as the
works of Liu, Liu, and Chen, 2017. We expect that the question: “How to construct a robust
representation that easily captures the spatio-temporal evolutions of motions from RGB-D data before
feeding it to deep neural networks"? will continue to be studied in the future.

3.4 Conclusion

We have seen in this chapter that in recent years, deep learning-based approaches have
shown impressive performance and big potential in analyzing and recognizing human ac-
tions in videos. Our goal in carrying out this state of the art and analysis is to acquire a better
knowledge on deep learning models applied to the recognition of human actions in videos.
A comprehensive review of various deep learning architectures and their applications in
action recognition have been provided based on more than 250 related publications. Our
analysis and comparisons of the recognition performance of different deep learning-based
approaches allow to identify state-of-the-art deep architectures for this task. In addition, the
characteristics of the most important deep learning architectures for action recognition have
been also analyzed to provide current trends and open problems for future works in this
field. Moreover, we also provided in this chapter a list of action recognition datasets with
different complexity levels. The main aim of the next chapter, which is the heart of the PhD
work, is to explain how we use and adapt the previous frameworks described in chapter
2 and chapter 3. In particular, we devise several deep learning-based methodologies and
representations that are evaluated on public benchmark datasets as well as on real-world
dataset in the field of safety in public transport.
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TABLE 3.4: Recognition performance on the NTU-RGB+D dataset (Shahroudy et al., 2016).

Feature Method Cross-Subject Cross-View Avg.

Hand-crafted
HON-4D (Oreifej and Liu, 2013, re-

ported in Shahroudy et al., 2016)
30.56% 7.26% 18.81%

Hand-crafted
Super Normal Vector (Yang and Tian,

2014, reported in Shahroudy et al., 2016)
31.82% 13.61% 22.72%

Hand-crafted
HOG2 (Ohn-Bar and Trivedi, 2013, re-

ported in Shahroudy et al., 2016)
32.24% 22.27% 27.26 %

Hand-crafted

Skeletal Quads (Evangelidis, Singh, and

Horaud, 2014, reported in Shahroudy et

al., 2016)

38.62% 41.36% 40.00%

Hand-crafted

Lie Group (Vemulapalli, Arrate, and

Chellappa, 2014, reported in Shahroudy

et al., 2016)

50.08% 52.76% 51.42 %

Hand-crafted
Key Poses + SVM (Cippitelli et al.,

2016a)
48.90% 57.70% 53.30%

Hand-crafted

Jointly Learning Features (Hu et al.,

2015a, reported in Shahroudy et al.,

2016)

60.23% 65.22% 62.76%

CNN

Shuffle and Learn (Misra, Zitnick, and

Hebert, 2016, reported in Shahroudy et

al., 2016)

47.52% N/A N/A

CNN
Multi-stream CNN + Transfer Learning

(Rahmani and Bennamoun, 2017)
75.20% 83.10% 79.15%

CNN Clips + CNN + MTLN (Ke et al., 2017) 79.57% 84.83% 82.20%

CNN Joint Maps + CNN (Li et al., 2017a) 76.20% 82.30% 79.25%

CNN Improved ResNet (Pham et al., 2018b) 78.20% 85.60% 81.90%

CNN
Multi-stream CNN (Liu, Liu, and Chen,

2017)
80.03% 87.21% 83.62%

RNN

Hierarchical RNN (Du, Wang, and

Wang, 2015, reported in Shahroudy et

al., 2016)

59.07% 63.97% 61.52%

RNN P-LSTM (Shahroudy et al., 2016) 62.93% 70.27% 66.60%

RNN RNN Encoder-Decoder (Luo et al., 2017) 66.20% N/A N/A

RNN Spatio-temporal LSTM (Liu et al., 2016b) 69.20% 77.70% 73.45%

RNN STA-LSTM (Song et al., 2017) 73.40% 81.20% 77.30%

RNN
Multilayer LSTM (Zhang, Liu, and Xiao,

2017)
70.26% 82.39% 76.32%

RNN
Ensemble TS-LSTM v2 LSTM (Lee et al.,

2017)
74.60% 81.25% 77.93%

CNN+RNN
Multi-Score Fusion (LSTM+CNN - Li et

al., 2017b)
82.89% 90.10% 86.50%

CNN+RNN
Two-Stream RNN+CNN (Zhao, Ali, and

Smagt, 2017)
83.74% 93.65% 88.69%

Other Res-TCN (Kim and Reiter, 2017) 74.30% 81.10% 77.70%

Other DSSCA - SSLM (Shahroudy et al., 2017) 74.86% N/A N/A
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Recognition from Skeletal Data Provided by RGB-D Sensors

Chapter overview: Depth sensors are able to provide detailed information about the 3D
structure of the human movements using real-time skeleton estimation algorithms. This
data source is a high-level representation allowing to describe human action in a more pre-
cise and effective way than that in RGB images. This is suitable for the problem of action
analysis and recognition. However, designing motion representations for the problem of
3D human action recognition from skeleton sequences is still a challenging task. An effec-
tive representation should be robust to noise, invariant to viewpoint changes and result in
a good performance with low-computational demand. Two main challenges in this task in-
clude how to efficiently represent spatio-temporal patterns of skeletal movements and how
to learn their discriminative features for classification task. In this chapter, we propose novel
skeleton-based representations for 3D human action recognition in videos using Deep Con-
volutional Neural Networks (D-CNNs). Two key issues have been addressed: First, how to
build a robust representation that easily captures the spatio-temporal evolutions of motions
from skeleton sequences. Second, how to design D-CNNs capable of learning discrimina-
tive features from the new representation in an effective manner. To address these tasks,
we propose to encode the 3D coordinates of the human body joints carried by skeleton se-
quences to color images (Section 4.1). These color images are able to capture the spatio-
temporal evolutions of skeletons and can be efficiently learned by D-CNNs. We then pro-
pose a deep learning architecture based on ResNets (Kaiming et al., 2016) to learn features
from obtained color-based representations and classify them into action classes. Experimen-
tal results on the MSR Action3D (Wanqing, Zhengyou, and Zicheng, 2010), KARD (Gaglio,
Re, and Morana, 2014) and NTU-RGB+D (Shahroudy et al., 2016) datasets demonstrate that
our method achieves state-of-the-art performance for all these benchmarks.

We then continue to investigate and expand the technique above. As a result, we in-
troduce two new 3D skeleton-based representations, called SPMF (“Skeleton Posture-Motion
Feature” – Section 4.2) and Enhanced-SPMF (Section 4.3). The SPMF and Enhanced-SPMF are
compact image representations built from skeleton poses and their motions. The Enhanced-
SPMF is an extension of the SPMF in which a smoothing filter and an Adaptive Histogram
Equalization (AHE) algorithm were applied to reduce the effect of noise on skeletal data as
well as to enhance their local patterns. For learning and classification tasks, we exploit state-
of-the-art D-CNNs such as the Inception-ResNet-v2, DenseNet, and Neural Architecture
Search (NAS) to learn directly an end-to-end mapping between input skeleton sequences
and their action labels via the proposed representations. Our method is evaluated on four
challenging benchmark datasets, including both individual actions (MSR Action3D – Wan-
qing, Zhengyou, and Zicheng, 2010, KARD – Gaglio, Re, and Morana, 2014), interactions
(SBU Kinect Interaction – Yun et al., 2012a), and multiview & large-scale dataset (NTU-
RGB+D dataset – Shahroudy et al., 2016). The experimental results demonstrate that the
proposed method outperforms previous state-of-the-art approaches on all benchmark tasks.

4.1 Learning and recognizing 3D human actions from skele-
ton movements with Deep Residual Neural Networks

The computer vision community is currently focusing on solving action recognition prob-
lems in real videos, which contain thousands of samples with many challenges. In this
process, D-CNNs have played a significant role in advancing the state-of-the-art in various
vision-based action recognition systems. In 2016, the introduction of residual connections
in conjunction with a more traditional CNN model in a single architecture called ResNet
(Kaiming et al., 2016) has shown impressive performance and great potential for image
recognition tasks. In this section, we investigate and apply ResNets for human action recog-
nition using skeletal data provided by depth sensors. Firstly, the 3D coordinates of the
human body joints carried in skeleton sequences are transformed into image-based repre-
sentations as RGB images. These color images are able to capture the spatio-temporal evo-
lutions of 3D motions from skeleton sequences and can be efficiently learned by D-CNNs.
We then propose a novel deep learning architecture based on the ResNet (Kaiming et al.,
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2016) to learn features from obtained color-based representations and classify them into ac-
tion classes. The proposed method is evaluated on three challenging benchmark datasets
including MSR Action3D (Wanqing, Zhengyou, and Zicheng, 2010), KARD (Gaglio, Re, and
Morana, 2014), and NTU-RGB+D (Shahroudy et al., 2016) datasets. Experimental results
demonstrate that our method achieves state-of-the-art performance for all these benchmarks.
In particular, the proposed method surpasses previous approaches by a significant margin of
3.4% on MSR Action3D dataset, 0.67% on KARD dataset, and 2.5% on NTU-RGB+D dataset.

4.1.1 Introduction

Traditional studies on video-based human action recognition mainly focus on the use of
hand-crafted local features such as Cuboids (Dollár et al., 2005) or HOG/HOF (Laptev et al.,
2008) that are provided by 2D cameras. These approaches typically recognize human actions
based on the appearance and movements of human body parts in videos. Another approach
is to use Genetic Programming (GP) for generating spatio-temporal descriptors of motions
(Liu, Shao, and Rockett, 2012). However, one of the major limitations of the 2D data is the ab-
sence of 3D structure from the scene. Therefore, single modality action recognition on RGB
sequences is not enough to overcome the challenges in human action recognition, especially
in realistic videos. Recently, the rapid development of depth-sensing time-of-flight camera
technology has helped in dealing with problems, which are considered complex for tradi-
tional cameras. Depth cameras, e.g. Microsoft Kinect TMsensor (Cruz, Lucio, and Velho, 2012;
Han et al., 2013) or ASUS Xtion (ASUS, 2018), are able to provide detailed information about
the 3D structure of the human motion. Thus, many approaches have been proposed for rec-
ognizing actions based on RGB sequences, depth (Baek et al., 2016), or combining these two
data types (Wang, Liu, and Wu, 2014), which are provided by depth sensors. Moreover, they
are also able to provide real-time skeleton estimation algorithms (Shotton et al., 2011) that
help to describe actions in a more precise and effective way. The skeleton-based representa-
tions have the advantage of lower dimensionality than RGB/RGB-D-based representations.
This benefit makes action recognition systems become simpler and faster. Therefore, ex-
ploiting the 3D skeletal data provided by depth sensors for human action recognition is a
promising research direction. In fact, many skeleton-based action recognition approaches
have been proposed (Wang et al., 2012; Xia, Chen, and Aggarwal, 2012b; Chaudhry et al.,
2013; Vemulapalli, Arrate, and Chellappa, 2014; Ding et al., 2016).

In recent years, approaches based on CNNs have achieved outstanding results in many
image recognition tasks (Krizhevsky, Sutskever, and Hinton, 2012a; Karpathy et al., 2014).
After the success of AlexNet (Krizhevsky, Sutskever, and Hinton, 2012a) in the ImageNet
competition (Russakovsky et al., 2015), a new direction of research has been opened for
finding higher performing CNN architectures. As a result, there are many signs that seem
to indicate that the learning performance of CNNs can be significantly improved by increas-
ing their depth (Simonyan and Zisserman, 2014b; Szegedy et al., 2015a; Telgarsky, 2016). In
the literature of human action recognition, many studies have indicated that CNNs have
the ability to learn complex motion features better than hand-crafted approaches (see FIG-
URE 4.1). However, most authors have just focused on the use of relatively small and simple
CNNs such as AlexNet (Krizhevsky, Sutskever, and Hinton, 2012a) and have not yet fully
exploited the potential of recent state-of-the-art very deep CNN architectures. In addition,
most existing CNN-based approaches use RGB, depth or RGB-D sequences as the input to
learning models. Although RGB-D images are informative for human action recognition,
however, the computation complexity of these models will increase rapidly when the di-
mension of the input features is large. This makes models become more complex, slower
and less practical for solving large-scale problems.
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FIGURE 4.1: The recognition performance of hand-crafted and deep learning approaches
reported on the Cross-View evaluation criteria of NTU-RGB+D dataset (Shahroudy et al.,
2016). The traditional approaches are marked with circles (Oreifej and Liu, 2013; Ohn-Bar
and Trivedi, 2013; Yang and Tian, 2014; Evangelidis, Singh, and Horaud, 2014; Hu et al.,
2015b). The deep learning-based approaches are marked with squares (Du, Wang, and Wang,
2015; Shahroudy et al., 2016; Liu et al., 2016b; Song et al., 2017; Li et al., 2017a). Note that,
this comparison was made in 2017.

In this work, we aim to take full advantages of 3D skeleton-based representations and
the ability of learning highly hierarchical image features of D-CNNs to build an end-to-end
learning framework for human action recognition from skeletal data. To this end, all the
3D coordinates of the skeletal joints in the body provided by Kinect sensors are represented
as 3D arrays and then stored as RGB images by using a simple skeleton-to-image encoding
method. The main goal of this processing step is to ensure that the color images effectively
represents the spatio-temporal structure of the human action included in skeleton sequences
and they are compatible with the deep learning networks as D-CNNs. To learn image fea-
tures and recognize their labels, we propose to use ResNets (Kaiming et al., 2016) – a very
deep and recent state-of-the-art CNN for image recognition. In the hope of achieving higher
levels of performance, we propose a new deep architecture based on the original ResNet,
which is easier to optimize and able to better prevent overfitting. We evaluate the proposed
method on three benchmark skeleton datasets, MSR Action3D (Wanqing, Zhengyou, and
Zicheng, 2010), Kinect Activity Recognition Dataset - KARD (Gaglio, Re, and Morana, 2014),
NTU-RGB+D (Shahroudy et al., 2016), and obtain state-of-the-art recognition accuracies on
all these datasets. Furthermore, we also point out the effectiveness of our learning frame-
work in terms of computational complexity, the ability to prevent overfitting and to reduce
the effect of degradation phenomenon in training very deep networks.

Section 4.1 is organized as follows: Section 4.1.2 discusses related works. In section 4.1.3,
we present the details of our proposed method. Datasets and experiments are described in
Section 4.1.4. Experimental results are shown in Section 4.1.5. This section also discusses
classification accuracy, overfitting issues, degradation phenomenon and computational effi-
ciency of the proposed deep learning networks. Additionally, we also discuss about different
factors that affect the recognition rate. Finally, a conclusion, which gives a synthesis of the
main achievements is provided in Section 4.1.6 with a transition to the follow up of our
research.

4.1.2 Related work

Our study is closely related to two major topics: skeleton-based action recognition and de-
signing D-CNN architectures for visual recognition tasks. This section presents some key
studies on these topics. We first discuss previous works on skeleton-based action recogni-
tion. Then, we introduce an overview of the development of D-CNNs and their potential
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for human action recognition. Related to human action recognition based on RGB/RGB-D
sequences, we refer the interested reader to the most successful approaches including Bag of
Words (BoWs – Peng et al., 2016; Liu et al., 2017b; Wang and Schmid, 2013), Dynamic Image
Networks (Bilen et al., 2016) and D-CNNs to learn RGB representation from raw data (Ng
et al., 2015; Simonyan and Zisserman, 2014a).

Skeleton-based action recognition

Recent skeleton-based action recognition methods can be divided into two main groups.
The first group combines hand-crafted skeleton features and graphical models to recognize
actions. The spatio-temporal representations from skeleton sequences are often modeled by
several common probabilistic graphical models such as Hidden Markov Model (HMM – Lv
and Nevatia, 2006; Wang et al., 2012; Yang, Saleemi, and Shah, 2013), Latent Dirichlet Al-
location (LDA – Blei, Ng, and Jordan, 2003; Liu, Shao, and Rockett, 2012) or Conditional
Random Field (CRF – Koppula and Saxena, 2013). In addition, Fourier Temporal Pyramid
(FTP – Wang et al., 2012; Vemulapalli, Arrate, and Chellappa, 2014; Hu et al., 2015b) has
also been used to capture the temporal dynamics of actions and then to predict their labels.
Another solution based on shape analysis methods has been exploited for skeleton-based
human action (Devanne et al., 2013). Specifically, the authors defined an action as a se-
quence of skeletal shapes and analyzed them by a statistical shape analysis tool such as the
geometry of Kendall’s shape manifold. Typical classifiers, e.g. K-Nearest-Neighbor (KNN
– Altman, 1992) or Support Vector Machine (SVM – Cortes and Vapnik, 1995) were then
used for classification. Although promising results have been achieved, however, most of
these works require a lot of feature engineering. E.g., the skeleton sequences often need to
be segmented and aligned for HMM- and CRF-based approaches. Meanwhile, FTP-based
approaches cannot globally capture the temporal sequences of actions.

The second group of methods is based on Recurrent Neural Networks with Long Short-
Term Memory Network (RNN-LSTMs – Hochreiter and Schmidhuber, 1997). The architec-
ture of an RNN-LSTM network allows to store and access the long range contextual informa-
tion of a temporal sequence. As human skeleton-based action recognition can be regarded
as a time-series problem (Gong, Medioni, and Zhao, 2014), RNN-LSTMs can be used to
learn human motion features from skeletal data. For that reason, many authors have ex-
plored RNN-LSTMs for 3D human action recognition from skeleton sequences (Du, Wang,
and Wang, 2015; Veeriah, Zhuang, and Qi, 2015; Ling, Tian, and Li, 2016; Zhu et al., 2016b;
Shahroudy et al., 2016; Liu et al., 2016b). To better capture the spatio-temporal dynam-
ics carried in skeletons, some authors used a CNN as a visual feature extractor, combined
with a RNN-LSTM in a unified framework for modeling human motions (Mahasseni and
Todorovic, 2016; Shi and Kim, 2017; Kim and Reiter, 2017). Although RNN-LSTM-based
approaches have been reported to provide good performance, there are some limitations
that are difficult to overcome. The use of RNNs for instance can lead to overfitting prob-
lems when the number of input features is not enough for training the network. Meanwhile,
the computational time can become a serious problem when the number of input features
increases.

D-CNNs for visual recognition

Recently, there is growing evidence that D-CNN models can improve performance in image
recognition (Simonyan and Zisserman, 2014b; Szegedy et al., 2015a). However, deep net-
works are very difficult to train. Two main reasons that impede the convergence of deeper
networks are vanishing gradients problems (Glorot and Bengio, 2010) and degradation phe-
nomenon (He and Sun, 2015). The vanishing gradients problem occurs when the network
is deep enough, the error signal from the output layer can be completely attenuated on
its way back to the input layer. This obstacle has been solved by normalized initialization
(LeCun et al., 1998b; He et al., 2015), especially by using Batch Normalization (Ioffe and
Szegedy, 2015). When the deep networks start converging, a degradation phenomenon oc-
curs (see APPENDIX D). If we add more layers to a deep network, this can lead to higher
training and/or testing error (He and Sun, 2015). This phenomenon is not as simple as an
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overfitting problem. To reduce the effect of vanishing gradients problems and degradation
phenomenon, Kaiming et al., 2016 introduced Residual Networks (ResNets) with the pres-
ence of shortcut connections parallel to their traditional convolutional layers. This idea helps
ResNets to improve the information flow across layers. Experimental results on two well-
known datasets including CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al.,
2015) confirmed that this architecture can improve the recognition performance and reduce
degradation phenomenon.

Several authors have exploited the feature learning ability of CNNs on skeletal data
(Hou et al., 2017; Wang et al., 2016c; Song et al., 2017; Li et al., 2017a). However, such stud-
ies mainly focus on finding good skeletal representations and learning features with simple
CNN architectures. In contrast, in this work we concentrate on exploiting the power of D-
CNNs for action recognition using a simple skeleton-based representation. We investigate
and design a novel deep learning framework based on ResNet (Kaiming et al., 2016) to learn
action features from skeleton sequences and then classify them into classes. Our experimen-
tal results show state-of-the-art performance on the MSR Action3D (Wanqing, Zhengyou,
and Zicheng, 2010), KARD (Gaglio, Re, and Morana, 2014) and NTU-RGB+D (Shahroudy et
al., 2016) datasets. Besides, our proposed solution is general and can be applied on various
different types of input data. For instance, this idea could be applied on the motion capture
(MoCap) data provided by inertial sensors.

4.1.3 Proposed method

This section presents our proposed method. We first describe a technique allowing to en-
code the spatio-temporal information of skeleton sequences into RGB images. Then, a novel
ResNet architecture is proposed for learning and recognizing actions from obtained RGB
images. Before that, in order to put our method into context, it is useful to review the central
ideas behind the original ResNet (Kaiming et al., 2016) architecture.

Encoding skeletal data into RGB images

FIGURE 4.2: Illustration of the joint positions in the human body extracted by Kinect v2
sensor (Microsoft, 2014). A sequence of skeletons is able to describe correctly what a person
performs in unseen videos.

Currently, the real-time skeleton estimation algorithms have been integrated into commer-
cial depth cameras (Shotton et al., 2011). This technology allows to quickly and easily extract
the position of the joints in the human body (FIGURE 4.2), which is suitable for the problem
of 3D action recognition. One of the major challenges in exploiting CNN-based methods
for skeleton-based action recognition is how a temporal skeleton sequence can be effectively
represented and fed to CNNs for learning data features and perform classification. As CNNs
are able to work well on images, the idea therefore is to encode the spatial and temporal dy-
namics of skeleton sequences into 2D image structures. In general, two essential elements
for recognizing actions are static postures and their temporal dynamics. These two elements
can be transformed into the static spatial structure of a color image (Bilen et al., 2016; Hou
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et al., 2017; Wang et al., 2016c). Then, a representation learning model such as CNNs can
be deployed to learn image features and classify them into classes in order to recognize the
original skeleton sequences.

FIGURE 4.3: Illustration of the color encoding process. Here, N denotes the number of
frames in each skeleton sequence. K denotes the number of joints in each frame. The value
of K depends on the depth sensors and data acquisition settings.

Given a skeleton sequence S with N frames, denoting as S = {F1, F2, ..., FN}. To represent
the spatio-temporal information of a skeleton sequence as an RGB image, we transform the
3D joint coordinates (xi, yi, zi) carried in each skeleton {Fn}, n ∈ [1, N] into the range of [0,
255] by normalizing these coordinates via a transformation function F(·) as follows:

(x′i , y′i, z′i) = F(xi, yi, zi) (4.1)

x′i = 255× (xi −min{C})
max{C} −min{C} (4.2)

y′i = 255× (yi −min{C})
max{C} −min{C} (4.3)

z′i = 255× (zi −min{C})
max{C} −min{C} (4.4)

where min{C} and max{C} are the maximum and minimum values of all coordinates over
the training dataset, respectively. The new coordinate space is quantified as a digital image
representation (8-bit: [0, 255]) and three coordinates (x′i , y′i, z′i) are considered as the three
components R, G, B of a color-pixel (x′i = R; y′i = G; z′i = B). As shown in FIGURE 4.3, each
skeleton sequence is encoded into an RGB image. By this transformation, the raw data of
skeleton sequences are converted to 3D tensors, which will then be fed into the learning
model as the input features.

The order of joints in each frame is non-homogeneous for many skeleton datasets. Thus,
it is necessary to rearrange joints and find a better representations in which different ac-
tions can be easily distinguished by the learning model. In other words, the image-based
representation needs to contain discriminative features – a key factor to ensure the success
of the CNNs during the learning process. Naturally, the human body is structured by four
limbs and one trunk. Simple actions can be performed through the movements of a limb
while more complex actions come from the movements of a group of limbs in conjunction
with the whole body. Inspired by this idea, Du, Wang, and Wang, 2015 proposed a simple
and effective technique for representing skeleton sequences according to human body phys-
ical structure. To keep the local motion characteristics and to generate more discriminative
features in image-based representations, we divide each skeleton frame into five parts, in-
cluding two arms (P1, P2), two legs (P4, P5), and one trunk (P3). In each part from P1 to
P5, the joints are concatenated according to their physical connections. We then rearrange
these parts in a sequential order, i.e. P1→ P2→ P3→ P4→ P5. The whole process of rear-
ranging all frames in a sequence can be done by rearranging the order of the rows of pixels
in RGB-based representations as illustrated in FIGURE 4.4. Some skeleton-based represen-
tations obtained from the MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010)
are shown in FIGURE 4.5.
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FIGURE 4.4: Arranging pixels in RGB images according to the human body physical struc-
ture.

FIGURE 4.5: Output of the encoding process obtained from some samples of the MSR
Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010). In our experiments, all images
were resized to 32 × 32 pixels before feeding into the deep learning networks. Best viewed
in color.

Deep Residual Network (ResNet)

A simple difference between ResNets and traditional CNNs is that ResNets provide a clear
path for gradients to back propagate to early layers during training. A deep ResNet is a
modularized architecture that is constructed from multiple ResNet building units. Each unit
has shortcut connection in parallel with traditional convolutional layers, which connects
the input feature directly to its output. Considering the input feature of the lth layer as xl ,
traditional CNNs (FIGURE 4.6a) learn a mapping function: xl+1 = F (xl ,Wl), where xl+1 is
the output of the lth layer andWl is a set of weights and biases associated with the lth ResNet
unit. F (·) is a non-linear transformation that can be implemented by the combination of
Batch Normalization (BN) (Ioffe and Szegedy, 2015), Rectified Linear Units (ReLU) (Nair
and Hinton, 2010) and Convolutions. Different from traditional CNNs, a ResNet building
unit (FIGURE 4.6b) performs the following computations:

xl+1 = ReLU (F (xl ,Wl) + id(xl)) (4.5)

where xl and xl+1 are input and output features of the lth ResNet unit, respectively; id(x)
is the identity function id(xl) = xl . The detailed architecture of an original ResNet unit is
shown in FIGURE 4.7a. In this architecture,F (·) consists of a series of layers: Convolution-BN-
ReLU-Convolution-BN. The ReLU (Nair and Hinton, 2010) is applied after each element-wise
addition +©.
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(a) (b)

FIGURE 4.6: (a) Information flow executed by a traditional CNN; (b) Information flow
executed by a ResNet building unit (Kaiming et al., 2016).

(a) (b)

FIGURE 4.7: (a) A ResNet building unit that was proposed in the original paper (Kaiming
et al., 2016); (b) Our proposed ResNet building. The symbol +© denotes element-wise addi-
tion.

An improved ResNet for skeleton-based action recognition in videos

The original ResNet architecture has a direct path for propagating information within a
residual unit. However, the presence of non-linear activations as ReLUs (Nair and Hin-
ton, 2010) behind element-wise additions +© (see FIGURE 4.7a) means that the signal cannot
be directly propagated from one block to any other block. To solve this problem, we propose
an improved ResNet building block in which the signal can be directly propagated from any
unit to another, both forward and backward for the entire network. The idea is to replace
ReLU layers after each element-wise addition +© by identity mappings id(·) for all units.
That way, the information flow across each new ResNet unit can be rewritten as:

xl+1 = id(yl) = F (xl ,Wl) + xl . (4.6)
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Eqn. (4.6) suggests that the feature xL of any deeper unit L can be represented according to
the feature xl of any shallower unit l:

xL = xl +
L−1

∑
i=l
F (xi,Wi). (4.7)

Also, the feature xL can be represented according to the input feature x0 of the first ResNet
unit:

xL = x0 +
L−1

∑
i=0
F (xi,Wi). (4.8)

Eqn. (4.8) indicates that we have created a “direct path” that helps the signal to be directly
propagated in forward pass through the entire network. Considering now the backpropa-
gation information, let L be the loss function that the network needs to optimize during the
supervised training stage. From the chain rule of backpropagation (LeCun et al., 1989b) and
Eqn. (4.7), we can express the backpropagation information through layers as:

∂L
∂xl

=
∂L
∂xL

∂xL
∂xl

=
∂L
∂xL

∂
(

xl + ∑L−1
i=l F (xi,Wi)

)
∂xl

(4.9)

or:
∂L
∂xl

=
∂L
∂xL

(
1 +

∂

∂xl

L−1

∑
i=l
F (xi,Wi)

)
(4.10)

The gradient
∂L
∂xl

depends on two elements
∂L
∂xL

and
∂L
∂xL

(
∂

∂xl
∑L−1

i=l F (xi,Wi)

)
, in which

the term
∂L
∂xL

is independent of any weight layers. This additive term ensures that the in-

formation flow can be easily propagated back from any deeper unit L to any shallower unit
l. Based on the above analyses, it can be concluded that if we replace ReLU layers after
element-wise additions by identity mappings, each ResNet unit will have a direct path to
the gradients from the loss function and to the input signal. In other words, the information
flow can be directly propagated from any unit to another, both forward and backward for
the entire network.

To implement the computations as described in Eqn. (4.6), we remove all ReLU lay-
ers behind element-wise additions +©. In addition, BN is used before each convolutional
layer, ReLU is adopted right after BN. This order allows to improve regularization of the
network. Dropout (Hinton et al., 2012) with a rate of 0.5 is used to prevent overfitting and
located between two convolutional layers. With this architecture, the mapping functionF (·)
is executed via a sequence of layers: BN-ReLU-Convolution-BN-ReLU-Dropout-Convolution as
shown in FIGURE 4.7b.

4.1.4 Experiments

In this section, we experiment the proposed method on three 3D skeleton datasets. We first
present the datasets and their evaluation criteria. Some data augmentation techniques that
are used for generating more training data are then described. Finally, implementation de-
tails of our deep networks are provided.

Datasets and evaluation criteria

In this section, we evaluate the proposed deep learning framework on MSR Action3D (Wan-
qing, Zhengyou, and Zicheng, 2010), KARD (Gaglio, Re, and Morana, 2014) and NTU-
RGB+D (Shahroudy et al., 2016). For each dataset, we follow the same evaluation criteria
as provided in the original papers. For the interested reader, some public RGB-D datasets
for human action recognition can be found in recent surveys (Zhang et al., 2016; Liu et al.,
2017a).
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MSR Action3D dataset: The MSR Action3D dataset1 (Wanqing, Zhengyou, and Zicheng,
2010) consists of 20 different action classes. Each action is performed by 10 subjects for three
times. There are 567 skeleton sequences in total. However, 10 sequences are not valid since
the skeletons were either missing. Therefore, our experiment was conducted on 557 se-
quences. For each skeleton frame, the 3D coordinates of 20 joints are provided. The authors
of this dataset suggested dividing the whole dataset into three subsets, named AS1, AS2, and
AS3. The list of actions for each subset is shown in TABLE 4.1. For each subset, we follow
the cross-subject evaluation method used by many other authors working with this dataset.
More specifically, a half of the dataset (subjects with IDs: 1, 3, 5, 7, 9) is selected for training
and the rest (subjects with IDs: 2, 4, 6, 8, 10) for test.

TABLE 4.1: The list of actions in three subsets AS1, AS2, and AS3 of the MSR Action3D
dataset (Wanqing, Zhengyou, and Zicheng, 2010).

AS1 AS2 AS3

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw X Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing
Pickup & Throw Side-boxing Pickup & Throw

Kinect Activity Recognition Dataset (KARD): This dataset2 (Gaglio, Re, and Morana,
2014) contains 18 actions, performed by 10 subjects and each subject repeated each action
three times. KARD provides 540 skeleton sequences in total. Each frame comprises 15 joints.
The authors suggested the different evaluation methods on this dataset in which the whole
dataset is divided into three subsets as shown in TABLE 4.2. For each subset, three experi-
ments have been proposed. Experiment A uses one-third of the dataset for training and the
rest for test. Meanwhile, experiment B uses two-third of the dataset for training and one-
third for test. Finally, experiment C uses a half of the dataset for training and the remainder
for testing.

TABLE 4.2: The list of action classes in each subset of the KARD dataset (Gaglio, Re, and
Morana, 2014).

Action Set 1 Action Set 2 Action Set 3

Horizontal arm wave High arm wave Draw tick
Two-hand wave Side kick Drink
Bend Catch cap Sit down
Phone call Draw tick Phone call
Stand up Hand clap Take umbrella
Forward kick Forward kick Toss paper
Draw X Bend High throw
Walk Sit down Horiz. arm wave

NTU-RGB+D Action Recognition Dataset: The NTU-RGB+D3 (Shahroudy et al., 2016)
is a very large-scale dataset. To the best of our knowledge, this is the largest and state-of-the-
art RGB-D/skeleton dataset for human action recognition currently available. It provides

1The MSR Action3D dataset can be obtained at: https://www.uow.edu.au/~wanqing/#Datasets.
2The KARD dataset can be obtained at: https://data.mendeley.com/datasets/k28dtm7tr6/1.
3The NTU-RGB+D dataset can be obtained at: http://rose1.ntu.edu.sg/Datasets/

actionRecognition.asp with authorization.

https://www.uow.edu.au/~wanqing/#Datasets
https://data.mendeley.com/datasets/k28dtm7tr6/1
http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp
http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp
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FIGURE 4.8: Some action classes of the NTU-RGB+D dataset (Shahroudy et al., 2016).

FIGURE 4.9: Configuration of 25 body joints in each frame of NTU-RGB+D dataset
(Shahroudy et al., 2016).

more than 56 thousand video samples and 4 million frames, collected from 40 distinct sub-
jects for 60 different action classes. FIGURE 4.8 shows some action classes of this dataset. The
3D skeletal data contains the 3D coordinates of 25 major body joints (FIGURE 4.9) provided
by Kinect v2 sensor. Therefore, its skeletal data describes more accurately about human
movements. The author of this dataset suggested two different evaluation criteria including
Cross-Subject and Cross-View. For Cross-Subject evaluation, the sequences performed by 20
subjects with IDs: 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, and 38 are used
for training and the rest sequences are used as testing data. In the Cross-View evaluation, the
sequences provided by cameras 2 and 3 are used for training while sequences from camera
1 are used for test. The complete list of actions of the NTU-RGB+D (Shahroudy et al., 2016)
is provided in APPENDIX A.

Data augmentation techniques

Very deep neural networks require a lot of data to train. Unfortunately, we have only 557
skeleton sequences on MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010) and
540 sequences on KARD (Gaglio, Re, and Morana, 2014). Thus, to prevent overfitting, some
data augmentation techniques have been applied. The random cropping, flip horizontally
and vertically techniques were used to generate more training samples. Specifically, 8-times
cropping has been applied on 40 × 40 images to create 32 × 32 images. Then, their hori-
zontally and vertically flipped images are created. For the NTU-RGB+D dataset (Shahroudy
et al., 2016), due to the very large-scale of this dataset, data augmentation techniques were
not applied.
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FIGURE 4.10: Data augmentation applied on MSR Action3D dataset.

Implementation details

Different configurations of ResNet with 20-layers, 32-layers, 44-layers, 56-layers, and 110-
layers were designed, based on the original Resnet (Kaiming et al., 2016) building unit
(FIGURE 4.7a) and the proposed ResNet building unit (FIGURE 4.7b). In total, we have
ten different ResNets. The baseline of the proposed architectures can be found in AP-
PENDIX B1. All networks are designed for the acceptable images with the size of 32 ×
32 pixels as input features and classifying them into n categories corresponding to n ac-
tion classes in each dataset. In the experiments, we use a mini-batch of size 128 for 20-
layer, 32-layer, 44-layer, and 56-layer networks and a mini-batch of size 64 for 110-layer
networks. We initialize the weights randomly and train all networks in an end-to-end
manner using Stochastic Gradient Descent (SGD) algorithm (Bottou, 2010) for 200 epochs
from scratch. The learning rate starts from 0.01 for the first 75 epochs, 0.001 for the next
75 epochs and 0.0001 for the remaining 50 epochs. The weight decay is set at 0.0001 and
the momentum at 0.9. In this work, MatConvNet4 (Vedaldi and Lenc, 2015) is used to im-
plement the solution. Our code and models are shared with the community at: https:
//github.com/huyhieupham/Improved-ResNet-Action-Recognition-Skeletal-Data.

4.1.5 Experimental results and analysis

This section reports our experimental results. To show the effectiveness of the proposed
method, the achieved results are compared with the state-of-the-art methods in the litera-
ture. All these comparisons are made following the same evaluation criteria.

Results on MSR Action3D dataset

The experimental results on MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng,
2010) are shown in TABLE 4.3. We achieved the best classification accuracy with the 44-layer
ResNet model which is constructed from the proposed ResNet building unit. Specifically,
classification accuracies are 99.9% on AS1, 99.8% on AS2, and 100% on AS3. We obtained
a total average accuracy of 99.9%. TABLE 4.5 compares the performance between our best
result with the state-of-the-art methods reported on this benchmark. This comparison indi-
cates that the proposed model outperforms many prior works, in which we improved the
accuracy rate by 3.4% compared to the best previous published results. FIGURE 4.11a and
FIGURE 4.11b show the learning curves of all networks on AS1 subset.

Results on KARD dataset

The experimental results on KARD dataset (Gaglio, Re, and Morana, 2014) are reported in
TABLE 4.4. It can be observed the same learning behavior as experiments on MSR Action3D
dataset, in which the best results are achieved by the proposed 44-layer ResNet model. TA-
BLE 4.6 provides the accuracy comparison between this model and other approaches on the
whole KARD dataset. Based on these comparisons, it can be concluded that our approach

4MatconvNet is an open source library for implementing Convolutional Neural Networks in the
Matlab environment and can be downloaded at address: http://www.vlfeat.org/matconvnet/.

https://github.com/huyhieupham/Improved-ResNet-Action-Recognition-Skeletal-Data
https://github.com/huyhieupham/Improved-ResNet-Action-Recognition-Skeletal-Data
http://www.vlfeat.org/matconvnet/
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TABLE 4.3: Recognition accuracy obtained by the proposed method on AS1, AS2, and AS3
subsets of the MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010).

Model AS1 AS2 AS3 Aver.

Original-ResNet-20 99.5% 98.6% 99.9% 99.33%
Original-ResNet-32 99.5% 99.1% 99.9% 99.50%

Original-ResNet-44 99.6% 98.5% 100% 99.37%
Original-ResNet-56 99.3% 98.4% 99.5% 99.07%

Original-ResNet-110 99.7% 99.2% 99.8% 99.57%
Proposed-ResNet-20 99.8% 99.4% 100% 99.73%

Proposed-ResNet-32 99.8% 99.8% 100% 99.87%
Proposed-ResNet-44 99.9% 99.8% 100% 99.90%

Proposed-ResNet-56 99.9% 99.1% 99.6% 99.53%
Proposed-ResNet-110 99.9% 99.5% 100% 99.80%

(a) Original ResNets (b) Proposed ResNets

(c) Original ResNets (d) Proposed ResNets

(e) Original ResNets (f) Proposed ResNets

FIGURE 4.11: (a) and (b): Learning curves on MSR Action3D (Wanqing, Zhengyou, and
Zicheng, 2010); (c) and (d): KARD (Gaglio, Re, and Morana, 2014); (e) and (f): NTU-RGB+D
(Shahroudy et al., 2016) datasets. Dashed lines denote training errors, bold lines denote test
errors. We recommend the reader to use a computer and zoom in to see these figures.
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TABLE 4.4: Recognition accuracy obtained by the proposed method on KARD dataset
(Gaglio, Re, and Morana, 2014).

Activity Set 1 Activity Set 2 Activity Set 3

Model A B C A B C A B C

Original-Resnet-20 100 100 100 100 100 100 99.8 100 99.8
Original-ResNet-32 100 100 100 100 100 100 99.8 99.9 99.8
Original-ResNet-44 100 100 100 100 100 100 99.7 99.7 99.7
Original-ResNet-56 99.9 100 100 100 100 99.9 99.5 99.9 99.8
Original-ResNet-110 99.8 100 99.8 99.9 100 99.9 99.3 100 99.7
Proposed-Resnet-20 100 100 100 100 100 100 99.8 100 99.9
Proposed-ResNet-32 100 100 100 100 100 100 99.8 99.9 99.8
Proposed-ResNet-44 100 100 100 100 100 100 99.9 99.9 100
Proposed-ResNet-56 100 100 100 100 100 100 99.7 100 99.8
Proposed-ResNet-110 99.9 100 99.9 100 100 100 99.7 100 99.8

TABLE 4.5: Comparing our best performance (Proposed-ResNet-44) with other approaches
on the MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010). All methods use
the same experimental protocol.

Method AS1 AS2 AS3 Aver.

Bag of 3D Points (Wanqing, Zhengyou, and Zicheng,
2010)

72.90% 71.90% 79.20% 74.67%

Space-time (Vieira et al., 2012) 84.70% 81.30% 88.40% 84.80%

Histograms of 3D Joints(Xia, Chen, and Aggarwal, 2012a) 87.98% 85.48% 63.46% 78.97%

Silhouette-Skeletal Data (Chaaraoui, Padilla-Lopez, and
Florez-Revuelta, 2013)

92.38% 86.61% 96.40% 91.80%

Depth Motion Maps (Chen, Liu, and Kehtarnavaz, 2013) 96.20% 83.20% 92.00% 90.47%

Group Sparsity (Luo, Wang, and Qi, 2013) 97.20% 95.50% 99.10% 97.26%

HOD 3D (Gowayyed et al., 2013) 92.39% 90.18% 91.43% 91.26%

Joint Locations (Hussein et al., 2013) 88.04% 89.29% 94.29% 90.53%

Depth + Shape Features (Qin, Yang, and Jiang, 2013) 81.00% 79.00% 82.00% 80.66%

3D Motion Trail (Liang and Zheng, 2013) 73.70% 81.50% 81.60% 78.93%

Skeletal Quads (Evangelidis, Singh, and Horaud, 2014) 88.39% 86.61% 94.59% 89.86%

Pose-based Recognition (Theodorakopoulos et al., 2014) 91.23% 90.09% 99.50% 93.61%

Multi-modality (Gao et al., 2014) 92.00% 85.00% 93.00% 90.00%

Space-Time Depth Map (Vieira et al., 2014) 91.70% 72.20% 98.60% 87.50%

Depth Motion Maps (Chen, Jafari, and Kehtarnavaz,
2015)

98.10% 92.00% 94.60% 94.90%

Hierarchical RNN (Du, Wang, and Wang, 2015) 93.33% 94.64% 95.50% 94.49%

S-T Pyramid (Xu et al., 2015a) 99.10% 92.90% 96.40% 96.10%

Vague Division Depth Maps (Jin et al., 2017) 99.10% 92.30% 98.20% 96.50%

Our best model 99.90% 99.80% 100% 99.90%
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TABLE 4.6: Average recognition accuracy of the best proposed model (Proposed-ResNet-
44) for experiments A, B and C compared to other approaches on the whole KARD dataset
(Gaglio, Re, and Morana, 2014).

Method Exp. A Exp. B Exp. C Aver.

Hand-crafted Feature (Gaglio, Re, and Morana, 2014) 89.73% 94.50% 88.27% 90.83%

Key Feature + Multi-class SVM (Cippitelli et al., 2016b) 96.47% 98.27% 96.87% 97.20%

Key Postures + Multi-class SVM(Ling, Tian, and Li, 2016) 98.90% 99.60% 99.43% 99.31%

Our best model 99.97% 99.97% 100% 99.98%

TABLE 4.7: Recognition accuracy on NTU-RGB+D dataset (Shahroudy et al., 2016) for
Cross-Subject and Cross-View evaluations.

Model Cross-Subject Cross-View

Original-ResNet-20 73.90% 80.80%
Original-ResNet-32 75.40% 81.60%
Original-ResNet-44 75.20% 81.50%
Original-ResNet-56 75.00% 81.50%
Original-ResNet-110 73.80% 80.00%
Proposed-ResNet-20 76.80% 83.80%
Proposed-ResNet-32 76.70% 84.70%
Proposed-ResNet-44 77.20% 84.80%
Proposed-ResNet-56 78.20% 85.60%
Proposed-ResNet-110 78.00% 84.60%

outperformed the prior state-of-the-art on this benchmark. FIGURE 4.11c and FIGURE 4.11d
show the learning curves of all networks on Activity Set 1 subset for Experiment C.

Results on NTU-RGB+D dataset

TABLE 4.7 shows the experimental results on NTU-RGB+D dataset (Shahroudy et al., 2016).
The best network achieved an accuracy of 78.2% on the Cross-Subject evaluation and 85.6%
on the Cross-View, respectively. The performance comparison between the proposed method
and the state-of-the-art methods on these two evaluations are provided in TABLE 4.8. These
results showed that our proposed method can deal with very large-scale datasets and out-
performs various state-of-the-art approaches for both evaluations. Comparing with the best
published result reported by Li et al., 2017a for the Cross-Subject evaluation, our method
significantly surpassed this result by a margin of +2.0%. For the Cross-View evaluation, we
outperformed the state-of-the-art accuracy in Kim and Reiter, 2017 by a margin of +2.5%.
FIGURE 4.11e and FIGURE 4.11f show the learning curves of all networks in these experi-
ments.

Discussion of the results

The results are discussed here following three main criteria: classification accuracy, overfit-
ting, effect of image resizing methods, effect of joint order, and computational efficiency.

Classification accuracy: In section 4.1.4, we evaluated the proposed learning framework
on three well-known benchmark datasets. We demonstrate empirically that our method
outperforms many previous studies on all these datasets under the same experimental pro-
tocols. The improvements on each benchmark are shown in TABLE 4.9. It is clear that in
terms of accuracy, our learning model is effective for solving the problems of human action
recognition.

Overfitting issues and degradation phenomenon: Considering the accuracies obtained
by our proposed ResNet architecture and comparing them to the results obtained by the
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TABLE 4.8: Performance comparison of our proposed ResNet models with the state-of-the-
art methods on the Cross-Subject evaluation criteria of NTU-RGB+D dataset (Shahroudy et
al., 2016).

Method (protocol of Shahroudy et al., 2016) Cross-Subject Cross-View

HON4D (Oreifej and Liu, 2013) 30.56% 7.26%

Super Normal Vector (Yang and Tian, 2014) 31.82% 13.61%

HOG2 (Ohn-Bar and Trivedi, 2013) 32.24% 22.27%

Skeletal Quads (Evangelidis, Singh, and Horaud, 2014) 38.62% 41.36%

Shuffle and Learn (Misra, Zitnick, and Hebert, 2016) 47.50% N/A

Key poses + SVM (Cippitelli et al., 2016a) 48.90% N/A

Lie Group (Vemulapalli, Arrate, and Chellappa, 2014) 50.08% 52.76%

HBRNN-L (Du, Wang, and Wang, 2015) 59.07% 63.97%

FTP Dynamic Skeletons (Hu et al., 2015b) 60.23% 65.22%

P-LSTM (Shahroudy et al., 2016) 62.93% 70.27%

RNN Encoder-Decoder (Luo et al., 2017) 66.20% N/A

ST-LSTM (Liu et al., 2016b) 69.20% 77.7%

STA-LSTM (Song et al., 2017) 73.40% 81.2%

Res-TCN (Kim and Reiter, 2017) 74.30% 83.1%

DSSCA - SSLM (Shahroudy et al., 2017) 74.86% N/A

Joint Distance Maps + CNN (Li et al., 2017a) 76.20% N/A%

Our best model (Proposed-ResNet-56) 78.20% 85.60%

TABLE 4.9: The best of our results compared to the best prior results on MSR Action3D
(Wanqing, Zhengyou, and Zicheng, 2010), KARD (Gaglio, Re, and Morana, 2014), and NTU-
RGB+D (Shahroudy et al., 2016) datasets.

MSR 3D KARD NTU-RGB+D NTU-RGB+D
(overall) (overall) Cross-Subject Cross-View

Prior works 96.50% 99.31% 76.20% 83.10%
Our results 99.90% 99.98% 78.20% 85.60%

Improvements 3.40% 0.67% 2.00% 2.50%

original ResNet architecture, we observed that our proposed networks are able to reduce the
effects of the degradation phenomenon for both training and test phases. E.g. the proposed
56-layer networks achieved better results than 20-layer, 32-layer, and 44-layer networks on
NTU-RGB+D dataset. Meanwhile, the original ResNet with 32-layer is the best network on
this benchmark. The same learning behaviors are found in experiments on the MSR Ac-
tion3D (Wanqing, Zhengyou, and Zicheng, 2010) and KARD (Gaglio, Re, and Morana, 2014)
datasets (TABLE 4.10). It should be noted that degradation phenomena depend considerably
on the size of datasets5. This is the reason why the 110-layer network got higher errors than
several other networks.

The difference between training error and test error on the learning curves shows the abil-
ity of overfitting prevention. Our experimental results on three action benchmarks showed
that the proposed ResNet architectures are capable of reducing overfitting in comparison
with the original architecture. We believe this result comes from the combination between
the use of BN (Ioffe and Szegedy, 2015) before convolutional layers and Dropout (Hinton
et al., 2012) in each ResNet unit.

Effect of image resizing methods on recognition performance: D-CNNs work with
fixed size tensors. Thus, before feeding image-based representations to ResNets, all these
images were resized to a fixed size of 32× 32 pixels. The resizing step may lead to the change

5Personal communication with H. Zang from the Rutgers University, USA and Amazon AI.
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TABLE 4.10: Relationship between the number of layers and its performance on three
benchmarks. The symbol 3 denotes the best network based on the original ResNet architec-
ture and 7 denotes the best network based on the proposed ResNet architecture.

# Network layers MSR Action3D KARD NTU-RGB+D

110
56 7

44 7 7

32 3 3

20 3

in the accuracy rate. To identify the effects of different resizing methods on the recognition
performance of the proposed model, we conducted an additional experiment on the MSR
Action3D/AS1 dataset (Wanqing, Zhengyou, and Zicheng, 2010) with Proposed-ResNet-20
network. In this experiment, two different resizing methods, including Nearest-Neighbor
interpolation and Bicubic interpolation were used for resizing image-based representations
before feeding to deep networks. Experimental results indicate that the difference between
the accuracy rates is very small (∆ = 0.3%; see FIGURE 4.12). Whatever the ResNet depth,
we show that the effect of resizing methods is the same. That is why we have only tested
with the proposed ResNet-20 network. This choice obey to processing time.

(a) (b)

FIGURE 4.12: Training and test errors (%) by the Proposed-ResNet-20 network on the MSR
Action3D/AS1 dataset (Wanqing, Zhengyou, and Zicheng, 2010): (a) resizing images using
bicubic interpolation; (b) resizing images using nearest-neighbor interpolation.

Effect of joint order on recognition performance: In our study, each skeleton was di-
vided into five parts and concatenated in a certain order in order to keep the local motion
characteristics and to generate discriminative features in image-based representations. To
clarify the effect of the order of joints in skeletons, we have tried to remove the step of re-
arranging joints in our implementation and perform experiments with the order of joints
provided by the Kinect SDK. We observed a dramatically decrease in the recognition accu-
racy (∆ = 9.0%) as shown in FIGURE 4.13.



4.1. Learning and recognizing 3D human actions from skeleton movements with
Deep Residual Neural Networks

61

(a) (b)

FIGURE 4.13: Training and test errors (%) by the Proposed-ResNet-20 network on the
MSR Action3D/AS1 dataset (Wanqing, Zhengyou, and Zicheng, 2010): (a) rearranging skele-
tons according to human body physical structure; (b) using the joints order provided by the
Kinect SDK without rearranging skeletons.

Computational efficiency evaluation: We take the Cross-View evaluation criterion of
the NTU-RGB+D dataset (Shahroudy et al., 2016) and the Proposed-ResNet-56 network to
illustrate the computational efficiency of our learning framework. As shown in FIGURE 4.14,
the proposed method has main components, including Stage 1 the encoding process from
skeletons to RGB images, Stage 2 the supervised training stage, and Stage 3 the prediction
stage. With the implementation in Matlab using MatConvNet toolbox (Vedaldi and Lenc,
2015) on a single NVIDIA GeForce GTX 1080 Ti GPU system6, without parallel processing,
we take 7.83 × 10−3 sec. per skeleton sequence during training. After about 80 epochs,
our network starts converging with an accuracy around 85%. While the prediction time,
including the time for encoding skeletons into RGB images and classification by pre-trained
ResNet, takes 8.31 × 10−3 sec. per skeleton sequence. This speed is fast enough to meet
many different applications.

FIGURE 4.14: Three main phases of the proposed method for predicting human action
from a new skeleton sequence.

6For more information about the specifications of this GPU, please refer to: https://www.nvidia.
com/en-us/geforce/products/10series/geforce-gtx-1080-ti/.

https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
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TABLE 4.11: Execution time of each component of our method.

Component Average processing time

Stage 1 7.83× 10−3s per sequence (Intel Core i7 3.2GHz CPU)

Stage 2 1.27× 10−3s per sequence (GTX 1080 Ti GPU)

Stage 3 8.31× 10−3s per sequence (GTX 1080 Ti GPU)

4.1.6 Conclusion

In this section, we have presented a novel deep learning framework based on ResNets for
human action recognition in videos with skeletal data. The idea is to combine two important
factors: a compact spatio-temporal representation of 3D motion combined with a powerful
deep learning model. By encoding skeleton sequences into RGB images and proposing a
novel ResNet architecture for learning human action from these images, higher levels of per-
formance have been achieved. We showed that the approach was effective for recognizing
actions on three well-established datasets. This work has been submitted to the Computer
Vision and Image Understanding journal in September 2017 and accepted for publication in
March 2018 (Pham et al., 2018b).

However, the proposed color encoding process is quite simple, which transforms the
3D body joint coordinates into RGB images via a normalization function. We believe that
a better “skeleton-to-image” transformation that encodes richer motion features could help
improve the learning performance. Furthermore, a more robust deep network architecture
could lead to higher recognition accuracy. Therefore, the main aim of the work described in
the next section is to extend the skeleton encoding method in which the Euclidean distance
and the orientation relationship between joints are exploited. As a result we introduce a
new 3D representation called SPMF (Skeleton Pose-Motion Feature). In addition, to achieve a
better feature learning and classification framework, we aim to design and train some new
and potential D-CNN architectures based on the idea of ResNet (Kaiming et al., 2016) such
as Inception-ResNet-v2 (Szegedy et al., 2017).

4.2 SPMF: A new skeleton-based representation for 3D ac-
tion recognition with Inception Residual Networks

In this section, we propose a novel skeleton-based representation for 3D action recognition,
namely, SPMF (Skeleton Pose-Motion Feature) in videos using D-CNNs. The SPMFs are built
from two of the most important properties of a human action: postures and their motions.
Therefore, they are able to effectively represent complex actions. For learning and recogni-
tion tasks, we design and optimize new D-CNNs based on the idea of Inception Residual
networks (Szegedy et al., 2017) to predict actions from SPMFs. Our method is evaluated on
two challenging datasets including MSR Action3D (Wanqing, Zhengyou, and Zicheng, 2010)
and NTU-RGB+D (Shahroudy et al., 2016). Experimental results indicated that the proposed
method surpasses state-of-the-art methods whilst requiring less computation.

4.2.1 Introduction

We believe that an effective representation of motion is the key factor influencing the perfor-
mance of a skeleton-based action recognition model. To better represent the characteristics
of 3D actions, we exploit body poses (Pose Features – PFs) and their motions (Motion Fea-
tures – MFs) for building a new representation called SPMF (Skeleton Pose-Motion Feature).
Each SPMF contains important characteristics related to the spatial structure and temporal
dynamics of skeletons. Additionally, a well-designed and deeper CNN can improve learn-
ing accuracy. Therefore, a new deep framework based on the Inception Residual networks
(Szegedy et al., 2017) is then proposed for learning and classifying (FIGURE 4.15). We ex-
ploit this architecture because it has been proved to be more robust than the ResNet archi-
tecture on some common benchmark datasets for object recognition tasks such as CIFAR
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FIGURE 4.15: Schematic overview of our method. Each skeleton sequence is encoded into
a color image via a skeleton-based representation called SPMF. Each SPMF is built from pose
vectors (PFs) and motion vectors (MFs). They are then fed to a D-CNN, which is designed
based on the combination of Residual learning (Kaiming et al., 2016) and Inception architec-
ture (Szegedy et al., 2016) for learning discriminative features from color-coded SPMFs and
performing action classification.

(Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015). Our experimental results on
two benchmark datasets confirmed these statements.

The main contributions of this section are a novel skeleton-based representation, a new
deep learning framework based on Inception-ResNet (Szegedy et al., 2017) and the proposed
method set a new state-of-the-art on the MSR Action3D (Wanqing, Zhengyou, and Zicheng,
2010) and the NTU-RGB+D (Shahroudy et al., 2016) datasets.

4.2.2 Proposed method

SPMF: From skeleton movement to color map

Two key elements to determine an action are static postures and their motions. We propose
SPMF, a novel representation based on these features that are extracted from skeletons. Note
that, combining too many geometric features will lead to lower performance than using only
a single feature or several main features (Zhang, Liu, and Xiao, 2017). In our study, each
SPMF is built from pose and motion vectors, as described below:

Pose Feature (PF): Given a skeleton sequence S with N frames, denoted by S = {Ft},
where t = 1, 2, 3, ..., N. Let pt

j and pt
k be the 3D coordinates of the j-th and k-th joints in Ft.

The Joint-Joint Distance J JDt
jk between pt

j and pt
k at timestamp t is computed as

J JDt
jk = ||p

t
j − pt

k||2, (t = 1, 2, 3, ..., N), (4.11)

where || · ||2 denotes the Euclidean distance between two joints. The joint distances ob-
tained by Eq. (4.11) for all types of actions of a specific dataset range from Dmin = 0 to
Dmax = max{J JDt

jk}. We note this distance space as Doriginal . In fact, Doriginal can be trans-
formed into a tensor-structure and fed directly to D-CNNs for learning action features. How-
ever, since Doriginal is a high-dimensional space, it could lead D-CNNs to overfit as well
as being time-consuming. Thus, we need to describe the input skeleton sequences as low-
dimensional signals such that they are easy to parameterize by learning models and discrim-
inative enough for a classification task. To do that, we normalize all elements of Doriginal to
the range [0, 1], denoted as D[0,1]. To reflect the change in joint distances, we encode D[0,1]

into a color space using a sequential discrete color palette called JET color map7. The en-
coding process converts the joint distances J JDt

jk ∈ D[0,1] for all possible combinations j and

k into color points JJDt
RGB ∈ N3

[0,255] performed by 256-color JET scale. To this end, we
first normalize the distance values with respect to the maximum and minimum values of
a grayscale image ranging from 0 to 1. As illustrated in FIGURE 4.16, the scalar distances
are converted to a three channel map via a JET mapping. This technique is similar to depth

7A JET color map is based on the order of colors in the spectrum of visible light, ranging from blue
to red, and passing through the cyan, yellow, and orange.
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encoding method presented in Eitel et al., 2015. The use of a discrete color palette allows
us to reduce complexity of input features. This helps accelerate the convergence rate of
deep learning networks during the training stage. Moreover, it should be noted that point-
point distances are invariant when they are moved into a new coordinate system in the 3D
Euclidean space. Therefore, the use of the Joint-Joint Distance J JDt

jk can help our final rep-
resentation be more independent to the camera viewpoint.

Apart from the distance information, the orientation between joints is also important for

FIGURE 4.16: Illustration of the encoding process that converts joint-joint distance values
to color points using a JET colormap.

describing human motions. The Joint-Joint Orientation JJOt
jk from joint pt

j to pt
k at time-

stamp t is computed as
JJOt

jk = pt
j − pt

k, (t = 1, 2, 3, ..., N). (4.12)

The JJOt
jk is a vector where all of its components p can be normalized to the range [0, 255].

This can be done via the following transformation

pnorm = floor(255× p− cmin

cmax − cmin
), (4.13)

where pnorm indicates the normalized value, cmax and cmin are the maximum and minimum
values of all coordinates over the training set, respectively. The function floor(·) rounds
down to the nearest integer. We consider three components (x, y, z) of JJOt

jk after normaliza-
tion as the corresponding three components (R, G, B) of a color pixel and build JJOt

RGB as a
3D array that is formed by all JJOt

jk values. We then define “a human pose" at timestamp t by
vector PFt that describes the distance and orientation relationship between skeleton joints,

PFt =
[
JJDt

RGB ++ JJOt
RGB

]
, (t = 1, 2, 3, ..., N). (4.14)

Here the symbol (++) horizontally concatenates vectors JJDt
RGB and JJOt

RGB together.

Motion Feature (MF): Let pt
j and pt+1

k denote the 3D coordinates of the j-th and k-th

joints at two consecutive frames Ft and Ft+1. Similarly to J JDt
jk in Eq. (4.11), the Joint-Joint

Distance J JDt,t+1
jk between pt

j and pt+1
k is computed as

J JDt,t+1
jk = ||pt

j − pt+1
k ||2, (t = 1, 2, 3, ..., N − 1). (4.15)

Also, similarly to Eq. (4.12), the Joint-Joint Orientation JJOt,t+1
jk from joint pt

j to pt+1
k is com-

puted as
JJOt,t+1

jk = pt
j − pt+1

k , (t = 1, 2, ..., N − 1). (4.16)

We define “a human motion" from t to t + 1 by vector MFt→t+1, in which

MFt→t+1 =
[
JJDt,t+1

RGB ++ JJOt,t+1
RGB

]
, (t = 1, 2, ..., N − 1), (4.17)
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where JJDt,t+1
RGB and JJOt,t+1

RGB are encoded to qualify the color representation as JJDt
RGB and

JJOt
RGB, respectively.

Modeling human action with PFs and MFs: Based on the obtained PFs and MFs, we
propose a skeleton-based representation called SPMF for 3D human action recognition. To
this end, all PFs and MFs computed from the skeleton sequence S are concatenated into a
single feature vector in temporal order from the beginning to the end of the action. It is a
global representation for the whole skeleton sequence S without dependence on the range
of action and can be obtained by

SPMF = [PF1 ++ MF1→2 ++ PF2 ++ ... ++ PFt ++ MFt→t+1 ++ PFt+1...

++PFN−1 ++ MFN−1→N ++ PFN ].
(4.18)

FIGURE 4.17 shows some SPMFs obtained from the MSR Action3D dataset after resizing
them to 32× 32 pixels.

.

FIGURE 4.17: The SPMFs obtained from some samples of the MSR Action3D dataset.
Color-changing reflects the change in distance between skeleton joints. Best viewed in color.

Inception Residual Network (Inception-ResNet)

D-CNNs have demonstrated state-of-the-art performance on many visual recognition tasks.
In particular, the recent Inception architecture (Szegedy et al., 2016) significantly improved
both the accuracy and computational cost through three key ideas: (1) reducing the input
dimension; (2) increasing not only the network depth, but also its width and (3) concate-
nating feature maps learned by different layers. However, very deep networks as Inception
are very difficult to train due to the vanishing problem and degradation phenomenon (He
and Sun, 2015). To this end, ResNet (Kaiming et al., 2016) has been introduced. The key
idea is to improve the flow of information and gradients through layers by using identity
connections. A layer, or a sequence of layers of a traditional CNN learns to calculate a map-
ping function y = F (x) from the input feature x. Meanwhile, a ResNet building block
approximately calculates the function y = F (x) + id(x) where id(x) = x. This idea helps
the learning process to be faster and more accurate. To learn spatio-temporal features from
the SPMFs, we propose the combination of Residual learning (Kaiming et al., 2016) and In-
ception architecture (Szegedy et al., 2016) to build D-CNNs (see APPENDIX B2 to see details
of the proposed network architectures). Batch normalization (Ioffe and Szegedy, 2015) and
Exponential Linear Units (ELUs – Clevert, Unterthiner, and Hochreiter, 2015) are applied
after each Convolution. Dropout (Hinton et al., 2012) with a rate of 0.5 is used to prevent
overfitting. A Softmax layer is employed for classification task. Our networks can be trained
in an end-to-end manner by the gradient descent using Adam update rule (Kingma and Ba,
2014). During training, our goal is to minimize the cross-entropy loss function between the
ground-truth label y and the predicted label ŷ by the network over the training samples X ,
which is expressed as follows:

LX (y, ŷ) = − 1
M

(
M

∑
i=1

(
C

∑
j=1

yij log ŷij

))
(4.19)

where M indicates the number of samples in training set X and C denotes the number of
action classes.
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4.2.3 Experiments

Datasets and settings

The proposed method is evaluated on the MSR Action3D and NTU-RGB+D datasets. We
follow the evaluation protocols as provided in the original papers as desribed in section 4.1.
The performance is measured by average classification accuracy over all action classes. We
did not use the KARD dataset because it is quite small and simple, and it doesn’t reflect
well the learning performance of deep neural networks. Using the method proposed in the
previous section, we already obtained an average accuracy of 99.8% on this dataset.

Implementation details

Three different network configurations were implemented and evaluated in Python with
Keras framework8 using the TensorFlow9 backend. During training, we use mini-batches of
256 images for all networks. The weights are initialized by the He initialization technique
(He et al., 2015). Adam optimizer (Kingma and Ba, 2014) is used with default parameters,
β1 = 0.9 and β2 = 0.999. The initial learning rate is set to 0.001 and is decreased by a
factor of 0.5 after every 20 epochs. All networks are trained for 250 epochs from scratch. We
applied some simple data augmentation techniques (i.e. randomly cropping, flipping and
Gaussian filtering) on the MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010)
due to its small size. For the NTU-RGB+D (Shahroudy et al., 2016), we do not apply any
data augmentation method.

4.2.4 Experimental results and analysis

TABLE 4.12 reports the experimental results and comparisons with state-of-the-art methods
on the MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010). We achieved the
best recognition accuracy by SPMF Inception-ResNet-222 network configuration with a to-
tal average accuracy of 98.56%. This result outperforms many previous studies (Chen, Liu,
and Kehtarnavaz, 2013; Vemulapalli, Arrate, and Chellappa, 2014; Du, Wang, and Wang,
2015; Liu et al., 2016b; Wang et al., 2016b; Weng, Weng, and Yuan, 2017; Xu et al., 2015a; Li
et al., 2017b). For the NTU-RGB+D dataset (Shahroudy et al., 2016), we achieved an accu-
racy of 78.89% on cross-subject evaluation and 86.15% on cross-view evaluation as shown in
TABLE 4.13. These results are better than previous state-of-the-art works reported in Vemula-
palli, Arrate, and Chellappa, 2014; Du, Wang, and Wang, 2015; Liu et al., 2016b; Shahroudy
et al., 2016; Hu et al., 2015b; Rahmani and Bennamoun, 2017. Finally, the comparison be-
tween SPMF associated with Inception-ResNet-v2 and skeleton-based ResNet (section 4.1)
shows that SPMF-based model is slightly better: 78.89% versus 78.20% for the cross-subject
evaluation and 86.15% versus 85.60% for the cross-view evaluation. However, there is no
improvement on the MSR Action3D dataset. We believe that deeper and larger networks
such as Inception-ResNet-v2 are more adapted to larger datasets.

8https://keras.io/
9https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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TABLE 4.12: Accuracy rate (%) on the MSR Action3D dataset. The symbol ‡ denotes the
number of building blocks Inception-ResNet-A, Inception-ResNet-B, and Inception-ResNet-
C, respectively. Details are provided in APPENDIX B2.

Method (protocol of Wanqing, Zhengyou, and Zicheng, 2010) AS1 AS2 AS3 Aver.

Bag of 3D Points (Wanqing, Zhengyou, and Zicheng, 2010) 72.90 71.90 71.90 74.70

Depth Motion Maps (Chen, Liu, and Kehtarnavaz, 2013) 96.20 83.20 92.00 90.47

Lie Group (Vemulapalli, Arrate, and Chellappa, 2014) 95.29 83.87 98.22 92.46

Hierarchical RNN (Du, Wang, and Wang, 2015) 99.33 94.64 95.50 94.49

ST-LSTM Trust Gates (Liu et al., 2016b) N/A N/A N/A 94.80

Graph-Based Motion (Wang et al., 2016b) 93.60 95.50 95.10 94.80

ST-NBNN (Weng, Weng, and Yuan, 2017) 91.50 95.60 97.30 94.80

S-T Pyramid (Xu et al., 2015a) 99.10 92.90 96.40 96.10

Ensemble TS-LSTM v2 (Li et al., 2017b) 95.24 96.43 100.0 97.22

Skeleton-based ResNet (section 4.1) 99.90 99.80 100.0 99.90

SPMF Inception-ResNet-121 ‡ 97.06 99.00 98.09 98.05

SPMF Inception-ResNet-222 97.54 98.73 99.41 98.56

SPMF Inception-ResNet-242 96.73 97.35 98.77 97.62

TABLE 4.13: Accuracy rate (%) on NTU-RGB+D dataset.

Method (protocol of Shahroudy et al., 2016) Cross-Subject Cross-View

Lie Group (Vemulapalli, Arrate, and Chellappa, 2014) 50.10 52.80

Hierarchical RNN (Du, Wang, and Wang, 2015) 59.07 63.97

ST-LSTM Trust Gates (Liu et al., 2016b) 69.20 77.70

Two-Layer P-LSTM (Shahroudy et al., 2016) 62.93 70.27

Dynamic Skeletons (Hu et al., 2015b) 60.20 65.20

STA-LSTM (Song et al., 2017) 73.40 81.20

Depth and Skeleton Fusion (Rahmani and Bennamoun, 2017) 75.20 83.10

Skeleton-based ResNet (section 4.1) 78.20 85.60

SPMF Inception-ResNet-121 77.02 82.13

SPMF Inception-ResNet-222 78.89 86.15

SPMF Inception-ResNet-242 77.24 83.45

FIGURE 4.18: Training loss and test accuracy of SPMF-Inception-ResNet-222 on MSR
Action3D (Wanqing, Zhengyou, and Zicheng, 2010) and NTU-RGB+D (Shahroudy et al.,
2016) datasets.
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FIGURE 4.19: Visualizing intermediate features generated by Inception-ResNet-222
after feeding several SPMFs into the network. These SPMFs come from samples in
the MSR Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010). Best viewed
in color.

4.2.5 Processing time: training and prediction

We take the NTU-RGB+D dataset (Shahroudy et al., 2016) with cross-view settings and
SPMF-Inception-ResNet-222 network for illustrating the computational efficiency of our learn-
ing framework. With the implementation in Python on a single GeForce GTX Ti GPU, no
parallel processing, the training phase takes 1.85×10-3 sec. per sequence in which skeletons
are already encoded into RGB images. While the testing phase, including the time for en-
coding skeletons into color images and classification, takes 0.128 sec. per sequence. These
results verify the effectiveness of the proposed method, not only in terms of accuracy, but
also in terms of computational cost.

4.2.6 Conclusion

Section 4.2 introduced a new method for recognizing human actions from skeletal data. A
novel skeleton-based representation, namely SPMF, is proposed for encoding spatio-temporal
dynamics of skeleton joints into color images. Deep Convolutional Neural Networks (D-
CNNs) based on Inception Residual architecture are then exploited to learn and recognize
actions from obtained image-based representations. Experiments on two publicly available
benchmark datasets have demonstrated the effectiveness of the proposed representation as
well as feature learning networks. This work has been published in the International Con-
ference on Image Processing (ICIP) in October 2018 (Hieu Pham et al., 2018).

The comparison with the skeleton-based ResNet presented in section 4.1 showed a slight
improvement accuracy on the NTU-RGB+D dataset (Shahroudy et al., 2016). We think that
rich features such as pose and motion features could make the proposed SPMF more ro-
bust to the change of camera viewpoints. This represents the work carried out and pre-
sented in the next section. Indeed, we aim to improve the SPMF representation by making
it more robust to noise and more discriminative for classification task. This can be done
by using a smoothing filter and an image enhancement method. This new method, called
Enhanced-SPMF is presented in section 4.3. A new state-of-the-art deep neural network,
namely DenseNet is used for representation, learning and classification tasks.

4.3 Enhanced-SPMF: An extended representation of the SPMF
for 3D human action recognition with Deep Convolutional
Neural Networks

4.3.1 Introduction

In this section, we consider a new motion representation called Enhanced-SPMF. The pro-
posed Enhanced-SPMF has a 2D image structure with three color channels, which is built
from a set of spatio-temporal stages, combining 3D skeleton poses and their motions. More-
over, an Adaptive Histogram Equalization (AHE) algorithm (Pizer et al., 1987) is then ap-
plied to the color images to enhance their local patterns and generate more discrimina-
tive features for classification task. FIGURE 4.20 illustrates an overview of the proposed
Enhanced-SPMF. To learn image features and recognize action labels from the proposed
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representation, different D-CNN models based on the DenseNet architecture (Huang et al.,
2017) have been designed and evaluated. There are two important hypotheses that moti-

FIGURE 4.20: Overview of the proposed Enhanced-SPMF representation. Each skeleton
sequence is transformed into a single RGB that is a motion map called SPMF. A color en-
hancement technique (Pizer et al., 1987) is then used to highlight the motion map and form
the Enhanced-SPMF, which will be learned and classified by a deep learning model. Before
computing the SPMF, a smoothing filter is applied to reduce the effect of noise on skeletal
data.

vate us to propose the Enhanced-SPMF and design DenseNets (Huang et al., 2017) for 3D
human action recognition with skeletal data. First, the SPMF can be more discriminative
if its local features are enhanced by a color enhancement method. More accurate skeleton
joints can be also obtained if a filter is applied before starting the process of color encoding.
Second, DenseNet (Huang et al., 2017) can improve accuracy in the image recognition task
since this kind of network is able to prevent overfitting and degradation phenomena (He
and Sun, 2015) by maximizing information flow and facilitating features reuse as each layer
in its architecture has direct access to the features from previous layers. Experimental results
on the ImageNet dataset (Russakovsky et al., 2015) for common classification tasks showed
that DenseNet is able to achieve better performance than ResNet (Kaiming et al., 2016) and
Inception-ResNet-v2 (Szegedy et al., 2017). Therefore, we explore the use of DenseNet in
this work and optimise this architecture for learning and recognizing human actions on the
proposed image-based representation.

The effectiveness of the proposed method is evaluated on three public benchmark RGB-
D datasets, including MSR Action3D (Li, Zhang, and Liu, 2010), SBU Kinect Interaction (Yun
et al., 2012a) and NTU-RGB+D datasets (Shahroudy et al., 2016). Except for the SBU Kinect
Interaction dataset (Yun et al., 2012a) in section 4.1 we have already provided the descrip-
tion of the rest datasets. The specificity of the SBU Kinect Interaction is that it contains many
interactions between people which is not the case for the two other datasets.

The main contributions of our study include two aspects:

• Firstly, we present Enhanced-SPMF, a new skeleton-based representation for 3D hu-
man action recognition from skeletal data. The Enhanced-SPMF is an extended represen-
tation of SPMF which was presented in section 4.2. Compared to our previous work, the
current work aims to improve the efficiency of the 3D motion representation via a smooth-
ing filter and a color enhancement technique. The smoothing filter helps us to reduce the
effect of noise on skeletal data, meanwhile the color enhancement technique could make the
proposed Enhanced-SPMF more robust and discriminative for recognition task. An ablation
study on the Enhanced-SPMF was also carried out leading to a better overall action recogni-
tion performance than the SPMF.

• Secondly, we present a deep learning framework based on the DenseNet architecture
(Huang et al., 2017) for learning discriminative features from the proposed Enhanced-SPMF
and performing action classification. The framework directly learns an end-to-end mapping
between skeleton sequences and their action labels with little pre-processing. Compared to
our previous work that exploited the Residual Inception v2 network, the current work uses
a more powerful deep learning model for action recognition task.
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In the following, we present the details of the proposed approach in section 4.3.2. Experi-
mental settings are in section 4.3.3 and the experimental results in section 4.3.4.

4.3.2 Proposed method

FIGURE 4.21 illustrates the key components of the proposed learning framework for rec-
ognizing actions from skeleton sequences. We first show how skeleton pose and motion
features can be combined to build an action map in the form of an image-based representa-
tion and how to use a color enhancement technique for improving the discriminative ability
of the proposed representation. We then introduce an end-to-end deep leaning framework
based on DenseNets to learn and classify actions from the enhanced representations. Before
that, in order to put the proposed approach into context, it is useful to review the central
ideas behind the original DenseNet architecture.

FIGURE 4.21: Schematic overview of the proposed approach. Each skeleton sequence
is encoded in a single color image via the SPMF. They are then enhanced by an Adaptive
Histogram Equalization (AHE – Pizer et al., 1987) algorithm and fed to a DenseNet (Huang
et al., 2017) for learning discriminative features and performing action classification.

Enhanced-SPMF: Building an enhanced 3D action map

The SPMF representations mainly reflect the spatio-temporal distribution of skeleton joints.
We visualize these representations and observe that they tend to be low contrast images,
as shown in FIGURE 4.22. In this case, a color enhancement method can be useful for in-
creasing contrast and highlighting the texture and edges of the motion maps. Therefore, it
is necessary to enhance the local features on the generated color images after encoding. The
Adaptive Histogram Equalization (AHE – Pizer et al., 1987) is a common approach for this
task. This technique is capable of enhancing the local features of an image. Mathematically,
let I be a given digital image, represented as a r-by-c matrix of integer pixels with intensity
levels in the range [0,L− 1]. The histogram of image I will be defined by

Hk = nk, (4.20)

where nk is the number of pixels in I with intensity k. The probability of occurrence of
intensity level k in I can be estimated by

pk =
nk

r× c
, (k = 0, 1, 2, ...,L− 1). (4.21)

The histogram equalized image is defined by transforming the pixel intensities, n, of I by
the function

T(n) = floor((L− 1)
n

∑
k=0

pk), (n = 0, 1, 2, ...,L− 1), (4.22)

The Histogram Equalization (HE) method is used for increasing the global contrast of the
image. However, it cannot solve the problem of increasing local contrast. To overcome
this limitation, the image needs to be divided into R regions and the HE is then applied
in each and every one of these regions. This technique is called the Adaptive Histogram
Equalization algorithm (AHE – Pizer et al., 1987). The bottom row of FIGURE 4.22 shows
samples of the enhanced motion map with R = 8 on 32 × 32 images, which we refer to
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it as Enhanced-SPMF, for some actions from the MSR Action3D dataset (Li, Zhang, and
Liu, 2010). Before transforming skeleton joints into the Enhanced-SPMF representations,

FIGURE 4.22: Results of the skeleton-to-image mapping process. The top row shows the
proposed SPMF representations obtained from some samples of the MSR Action3D dataset
(Li, Zhang, and Liu, 2010). The change in color reflects the change of distance and orienta-
tion between the joints. The bottom row shows generated images after applying the AHE
algorithm (Pizer et al., 1987).

we apply the Savitzky-Golay (S-G) filter (see APPENDIX C) on row skeletal data. This is a
low-pass filter based on local least-squares polynomial approximation that is often used to
smooth noisy data. In our case, this filter could reduce the effect of noise on input skeleton
sequences.

Densely Connected Convolutional Network (DenseNet)

DenseNet (Huang et al., 2017), considered as the current state-of-the-art CNN architecture,
has some interesting properties. In this architecture (Huang et al., 2017), each layer is con-
nected to all the others within a dense block and all layers can access to the feature maps
from their preceding layers. Besides, each layer receives direct information flow from the
loss function through the shortcut connections. These properties help DenseNet (Huang et
al., 2017) to be less prone to overfitting for supervised learning problems. Mathematically,
traditional CNN architectures, e.g. AlexNet (Krizhevsky, Sutskever, and Hinton, 2012b) or
VGGNet (Simonyan and Zisserman, 2014b), connect the output feature maps xl−1 of the
(l − 1)th layer as input to the lth layer and try to learn a mapping function

xl = Hl(xl−1), (4.23)

where Hl(·) is a non-linear transformation and usually implemented via a series of opera-
tions such as Convolution (Conv.), Rectified Linear Unit (ReLU – Glorot, Bordes, and Ben-
gio, 2011), Pooling (Lecun et al., 1998), and Batch Normalization (BN – Ioffe and Szegedy,
2015). When increasing the depth of the network, the network training process becomes
complex due to the vanishing-gradient problem and the degradation phenomenon (He and
Sun, 2015). To solve these problems, Kaiming et al., 2016 introduced ResNet. Inspired by the
philosophy of ResNet (Kaiming et al., 2016), to maximize information flow through layers,
Huang et al., 2017 proposed DenseNet with a simple connectivity pattern: the lth layer in a
dense block receives the feature maps of all preceding layers as inputs. That means

xl = Hl([x0 ++ x1 ++ x2 ++ ... ++ xl−1]), (4.24)

where [x0 ++ x1 ++ x2 ++ ...++ xl−1] is a single tensor constructed by concatenation of the out-
put feature maps of the previous layers. Additionally, all layers in the architecture receive
direct supervision signals from the loss function through the shortcut connections. In this
manner, the network is easy to optimize and resistant to overfitting. In DenseNet (Huang
et al., 2017), multiple dense blocks are connected via transition layers. Each transition layer
consists of a convolutional layer and followed by an average pooling layer that changes the
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size of feature maps10. Each block with its transition layer produces k feature maps and the
parameter k is called as the “growth rate” of the network. The non-linear functionHl(·) in the
original work (Huang et al., 2017) is a composite function of three consecutive operations:
BN-ReLU-Conv.

FIGURE 4.23: Illustration of the structure of a typical CNN (Krizhevsky, Sutskever, and
Hinton, 2012b – top row), a ResNet building block (Kaiming et al., 2016 – middle row) and a
DenseNet building block (Huang et al., 2017 – bottom row). The symbols ⊕ and ++© denote
the summation and concatenation operators, respectively.

Network design

We propose to design and optimize deep DenseNets (Huang et al., 2017) for learning and
classifying human actions on the Enhanced-SPMFs. To study how recognition performance
varies with architecture size, we explore different network configurations. The following
configurations are used in our experiments: DenseNet (L = 100, k = 12) ; DenseNet (L = 250,
k = 24); and DenseNet (L = 190, k = 40), where L is the depth of the network and k is the net-
work growth rate. On all datasets, we use three dense blocks on 32× 32 input images. In this
design,Hl(·) is defined as Batch Normalization (BN – Ioffe and Szegedy, 2015), followed by
an advanced activation layer called Exponential Linear Unit (ELU – Clevert, Unterthiner,
and Hochreiter, 2015) and 3× 3 Convolution (Conv.). A Dropout (Hinton et al., 2012) with a
rate of 0.2 is used after each Convolution to prevent overfitting. After the feature extraction
stage, a Full Connected (FC) layer is used for classification task in which the number of neu-
rons for this FC layer is equal to the number of action classes in each dataset. The proposed
networks can be trained in an end-to-end manner by gradient descent using Adam update
rule (Kingma and Ba, 2014). During the training stage, we minimize a cross-entropy loss
function, which is measured by the difference between the true action label y and the pre-
dicted action ŷ by the networks over the training samples X . In other words, the network
will be trained to solve the following optimization problem

Arg minW (LX (y, ŷ)) = Arg minW

(
− 1

M

M

∑
i=1

C

∑
j=1

yij log ŷij

)
, (4.25)

whereW is the set of weights that will be optimized by the model, M denotes the number
of samples in training set X and C is the number of action classes.

10The concatenation operation used in Eq. (4.24) is not viable when the size of feature maps changes.
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4.3.3 Experiments

Datasets and settings

For the MSR Action3D (Li, Zhang, and Liu, 2010) and NTU-RGB+D (Shahroudy et al., 2016)
datasets, we use the same evaluation settings as in section 4.1 and section 4.2. The SBU
Kinect Interaction dataset (Yun et al., 2012a) was collected using the Kinect v1 sensor. It con-
tains 282 skeleton sequences and 6822 frames performed by 7 participants. Each frame of the
SBU Kinect dataset (Yun et al., 2012a) contains skeleton joints of two subjects corresponding
to an interaction, each skeleton has 15 key joints. There are 8 interactions in total, includ-
ing approaching, departing, pushing, kicking, punching, exchanging objects, hugging, and shaking
hands. This dataset is challenging due to the fact that the joint coordinates exhibit low accu-
racy. Moreover, they contain non-periodic actions as well as very similar body movements.
For instance, there are some pairs of actions that are difficult to distinguish such as exchang-
ing objects – shaking hands or pushing – punching. We randomly split the whole dataset into 5
folds, in which 4 folds are used for training and the remaining 1 fold is used for test. It should
be noted that each skeleton frame provided by the SBU dataset (Yun et al., 2012a) contains
two separate subjects. Therefore, we consider them as two data samples and feature com-
putation is conducted separately for the two skeletons. Additionally, data augmentation (i.e.
random cropping, vertically flipping, rotation with α = 90◦) has been also applied on the
SBU dataset (Yun et al., 2012a).

Implementation details

For the four considered datasets, the proposed Enhanced-SPMF representations are com-
puted directly from the raw skeleton sequences without using a fixed number of frames. For
computational efficiency, all the image representations are resized to 32 × 32 pixels. The
three network configurations: DenseNet (L = 100, k = 12); DenseNet (L = 250, k = 24); and
DenseNet (L = 190, k = 40) were implemented and evaluated in Python with the support of
the Keras framework using TensorFlow as backend. During the training stage, we use mini-
batches of 32 images for all networks. The weights are initialized as per the He initialization
technique (He et al., 2015). Adam optimizer (Kingma and Ba, 2014) is used with defaut pa-
rameters (i.e., β1 = 0.9 and β2 = 0.999). Additionally, we use a dynamic learning rate during
training. The initial learning rate is set to 0.01 and is decreased by a factor of 0.1 after every
50 epochs. All networks are trained for 300 epochs from scratch.

4.3.4 Experimental results and analysis

Results on MSR Action3D dataset

Experimental results and comparisons of the proposed method with the current state-of-the-
art approaches on the MSR Action3D dataset (Li, Zhang, and Liu, 2010) are summarized in
TABLE 4.14. We compare the proposed method with Bag of 3D Points (Li, Zhang, and Liu,
2010), Depth Motion Maps (Chen, Liu, and Kehtarnavaz, 2013), Bi-LSTM (Tanfous, Drira,
and Amor, 2018), Lie Group (Vemulapalli, Arrate, and Chellappa, 2014), FTP-SVM (Tan-
fous, Drira, and Amor, 2018), Hierarchical LSTM (Du, Wang, and Wang, 2015), ST-LSTM
Trust Gates (Liu et al., 2016b), Graph-Based Motion (Wang et al., 2016b), ST-NBNN (Weng,
Weng, and Yuan, 2017), ST-NBMIM (Weng et al., 2018), S-T Pyramid (Xu et al., 2015a), En-
semble TS-LSTM v2 (Li et al., 2017b) and our previous models skeleton-based ResNet (4.1)
and SPMF Inception-ResNet-222 (see 4.2) using the same evaluation protocol. The proposed
DenseNets (L = 100, k = 12) and DenseNet (L = 190, k = 40) achieve average accuracies of
98.76% and 98.94%, respectively. Meanwhile, the best recognition accuracies are obtained by
the proposed DenseNet (L = 250, k = 24) with a total average accuracy of 99.10%. This result
outperforms many previous approaches (Li, Zhang, and Liu, 2010; Chen, Liu, and Kehtar-
navaz, 2013; Tanfous, Drira, and Amor, 2018; Vemulapalli, Arrate, and Chellappa, 2014; Du,
Wang, and Wang, 2015; Liu et al., 2016b; Wang et al., 2016b; Weng, Weng, and Yuan, 2017;
Weng et al., 2018; Xu et al., 2015a), demonstrating the superiority of the proposed method.



74
Chapter 4. Proposed Deep Learning-based Approach for 3D Human Action

Recognition from Skeletal Data Provided by RGB-D Sensors

FIGURE 4.25 (first row) shows learning curves of the proposed DenseNets on the AS1 sub-
set/MSR Action3D dataset (Li, Zhang, and Liu, 2010). The recognition accuracy for each
action class in the AS1 subset by the DenseNet (L = 250, k = 24) is provided in FIGURE 4.24
via its confusion matrix. For this dataset, the comparison between Enhanced-SPMF and
SPMF gives the following results: in the average column (TABLE 4.14) one can notice that
the result for Enhanced SPMF (99.10%) is better than that of SPMF (98.56%). Compared to
skeleton-based ResNet, there is no improvement on this dataset.

TABLE 4.14: Experimental results and comparison of the proposed method with state-the-
art approaches on the MSR Action3D dataset (Li, Zhang, and Liu, 2010).

Method (protocol of Li, Zhang, and Liu, 2010) Year AS1 AS2 AS3 Aver.

Bag of 3D Points (Li, Zhang, and Liu, 2010) 2010 72.90% 71.90% 71.90% 74.70%

Depth Motion Maps (Chen, Liu, and Kehtarnavaz, 2013) 2016 96.20% 83.20% 92.00% 90.47%

Bi-LSTM (Tanfous, Drira, and Amor, 2018) 2018 92.72% 84.93% 97.89% 91.84%

Lie Group (Vemulapalli, Arrate, and Chellappa, 2014) 2014 95.29% 83.87% 98.22% 92.46%

FTP-SVM (Tanfous, Drira, and Amor, 2018) 2018 95.87% 86.72% 100.0% 94.19%

Hierarchical LSTM (Du, Wang, and Wang, 2015) 2015 99.33% 94.64% 95.50% 94.49%

ST-LSTM Trust Gates (Liu et al., 2016b) 2016 N/A N/A N/A 94.80%

Graph-Based Motion (Wang et al., 2016b) 2016 93.60% 95.50% 95.10% 94.80%

ST-NBNN (Weng, Weng, and Yuan, 2017) 2017 91.50% 95.60% 97.30% 94.80%

ST-NBMIM (Weng et al., 2018) 2018 92.50% 95.60% 98.20% 95.30%

S-T Pyramid (Xu et al., 2015a) 2015 99.10% 92.90% 96.40% 96.10%

Ensemble TS-LSTM v2 (Li et al., 2017b) 2017 95.24% 96.43% 100.0% 97.22%

Skeleton-based ResNet (section 4.1) 2018 99.90% 99.80% 100.0% 99.90%

SPMF Inception-ResNet-222 (section 4.2) 2018 97.54% 98.73% 99.41% 98.56%

Enhanced-SPMF DenseNet (L = 100, k = 12) 2018 98.52% 98.66% 99.09% 98.76%

Enhanced-SPMF DenseNet (L = 250, k = 24) 2018 98.83% 99.06% 99.40% 99.10%

Enhanced-SPMF DenseNet (L = 190, k = 40) 2018 98.60% 98.87% 99.36% 98.94%

Results on SBU Kinect Interaction dataset

As reported in TABLE 4.15, the proposed DenseNet (L = 250, k = 40) achieved an accuracy of
97.86% and outperforms many existing state-of-the-art approaches including Raw Skeleton
(Yun et al., 2012a), Joint Features (Yun et al., 2012a), HBRNN (Du, Wang, and Wang, 2015),
CHARM (Li et al., 2015), Deep LSTM (Zhu et al., 2016c), Joint Features (Ji, Ye, and Cheng,
2014), ST-LSTM (Liu et al., 2016b), Co-occurrence+Deep LSTM (Zhu et al., 2016c), STA-LSTM
(Song et al., 2017), ST-LSTM+Trust Gates (Liu et al., 2016b), ST-NBMIM (Weng et al., 2018),
Clips+CNN+MTLN (Ke et al., 2017), Two-stream RNN (Wang and Wang, 2017), and GCA-
LSTM network (Liu et al., 2018). Using only skeleton modality, the proposed method out-
performs hand-crafted feature based approaches such as Raw Skeleton (Yun et al., 2012a),
Joint Features (Yun et al., 2012a) and recent state-of-the-art RNN-based approaches (Du,
Wang, and Wang, 2015; Zhu et al., 2016c; Liu et al., 2016b; Song et al., 2017; Wang and Wang,
2017; Liu et al., 2018). In particular, the proposed method achieves a significant accuracy
gain of 2.96% compared to the nearest competitor GCA-LSTM network (Liu et al., 2018).
This result demonstrates that the proposed deep learning framework is able to learn dis-
criminative spatio-temporal features of skeleton joints containing in the proposed motion
representation for classification task. Since skeleton-based ResNet (section 4.1) and SPMF
Inception-ResNet-v2 (section 4.2) were not applied to this dataset, there is no comparison
between them and Enhanced-SPMF.
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FIGURE 4.24: Confusion matrix of the proposed DenseNet (L = 250, k = 24) on the MSR
Action3D/AS1 dataset. Ground truth action labels are on rows and predictions by the pro-
posed method are on columns. We recommend the readers to use a computer and zoom in
to see clearly these figures.

TABLE 4.15: Action recognition accuracies (%) and comparison with previous works on
the SBU Kinect Interaction dataset (Yun et al., 2012a).

Method (protocol of Yun et al., 2012a) Year Acc. (%)

Raw Skeleton (Yun et al., 2012a) 2012 49.70%

Joint Features (Yun et al., 2012a) 2012 80.30%

HBRNN (Du, Wang, and Wang, 2015) 2015 80.40%

CHARM (Li et al., 2015) 2015 83.90%

Deep LSTM (Zhu et al., 2016c) 2017 86.03%

Joint Features (Ji, Ye, and Cheng, 2014) 2014 86.90%

ST-LSTM (Liu et al., 2016b) 2016 88.60%

Co-occurrence+Deep LSTM (Zhu et al., 2016c) 2018 90.41%

STA-LSTM (Song et al., 2017) 2017 91.51%

ST-LSTM+Trust Gates (Liu et al., 2016b) 2018 93.30%

ST-NBMIM (Weng et al., 2018) 2018 93.30%

Clips+CNN+MTLN (Ke et al., 2017) 2017 93.57%

CNN Kernel Feature Map (Tas and Koniusz, 2018) 2018 94.36%

Two-stream RNN (Wang and Wang, 2017) 2017 94.80%

GCA-LSTM network (Liu et al., 2018) 2018 94.90%

Enhanced-SPMF DenseNet (L = 100, k = 12) 2018 94.81%

Enhanced-SPMF DenseNet (L = 250, k = 24) 2018 96.67%

Enhanced-SPMF DenseNet (L = 190, k = 40) 2018 97.86%



76
Chapter 4. Proposed Deep Learning-based Approach for 3D Human Action

Recognition from Skeletal Data Provided by RGB-D Sensors

FIGURE 4.25: Training curves of the proposed DenseNet (L = 250, k = 24) on the MSR
Action3D (Li, Zhang, and Liu, 2010), SBU Kinect Interaction (Yun et al., 2012a), and NTU-
RGB+D (Shahroudy et al., 2016) datasets. Almost all designed networks are able to reach the
optimal weights after the first 100 epochs. The symbols k and L and denote the “growth rate”
and the depth of the network, respectively.

Results on NTU-RGB+D dataset

For the NTU-RGB+D dataset Shahroudy et al., 2016, the best configuration DenseNet (L =
250, k = 40) achieves an accuracy of 80.11% on the Cross-Subject evaluation and 86.82% on
the Cross-View evaluation, as summarized in TABLE 4.16. These results demonstrate the ef-
fectiveness of the proposed representation and deep learning framework since they surpass
previous state-of-the-art techniques such as Lie Group Representation (Vemulapalli, Arrate,
and Chellappa, 2014), Hierarchical RNN (Du, Wang, and Wang, 2015), Dynamic Skeletons
(Hu et al., 2015b), Two-Layer P-LSTM (Shahroudy et al., 2016), ST-LSTM Trust Gates (Liu
et al., 2016b), Geometric Features (Zhang, Liu, and Xiao, 2017), Two-Stream RNN (Wang
and Wang, 2017), Enhanced Skeleton (Liu, Liu, and Chen, 2017), Lie Group Skeleton+CNN
(Rahmani and Bennamoun, 2017), and GCA-LSTM (Liu et al., 2018). The experimental re-
sults have also shown that the proposed method leads to better overall action recognition
performance than our previous models including Skeleton-based ResNet (section 4.1) and
SPMF Inception-ResNet-222 (section 4.2). With a high recognition rate on the Cross-View
evaluation (86.82%) where the sequences provided by cameras 2 and 3 are used for training
and sequences from camera 1 are used for test, the proposed method shows its effectiveness
for dealing with the view-independent action recognition problem. FIGURE 4.25 shows the
training loss and test accuracy of the DenseNet (L = 250, k = 24) on this dataset.

An ablation study on the Enhanced-SPMF representation

We believe that the use of the AHE algorithm (Pizer et al., 1987) and the Savitzky-Golay
smoothing filter (Savitzky and Golay, 1964; Du, Wang, and Wang, 2015) helps the proposed
representation to be more discriminative, which improves recognition accuracy. To verify
this hypothesis, we carried out an ablation study on the Enhanced-SPMF representation
provided by the SBU Kinect Interaction dataset (Yun et al., 2012a). Specifically, we trained
the proposed DenseNet (L = 250, k = 24) on both the SPMFs and Enhanced-SPMFs. During
training, the same hyper-parameters and training methodology were applied. The experi-
mental results indicate that the proposed deep network achieves better recognition accuracy
when trained on the Enhanced-SPMFs. As reported in FIGURE 4.26, applying the AHE algo-
rithm (Pizer et al., 1987) and and the Savitzky-Golay smoothing filter (Savitzky and Golay,
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TABLE 4.16: Experimental results and comparison of the proposed method with previous
approaches on the NTU-RGB+D dataset (Shahroudy et al., 2016).

Method (protocol of Shahroudy et al., 2016) Year Cross-Subject Cross-View

Lie Group (Vemulapalli, Arrate, and Chellappa, 2014) 2014 50.10% 52.80%

Hierarchical RNN (Du, Wang, and Wang, 2015) 2016 59.07% 63.97%

Dynamic Skeletons (Hu et al., 2015b) 2015 60.20% 65.20%

Two-Layer P-LSTM (Shahroudy et al., 2016) 2016 62.93% 70.27%

ST-LSTM Trust Gates (Liu et al., 2016b) 2016 69.20% 77.70%

Geometric Features (Zhang, Liu, and Xiao, 2017) 2017 70.26% 82.39%

Two-Stream RNN (Wang and Wang, 2017) 2017 71.30% 79.50%

Enhanced Skeleton (Liu, Liu, and Chen, 2017) 2017 75.97% 82.56%

Lie Group+CNN (Rahmani and Bennamoun, 2017) 2017 75.20% 83.10%

CNN Kernel Feature Map (Tas and Koniusz, 2018) 2018 75.35% N/A

GCA-LSTM (Liu et al., 2018) 2018 76.10% 84.00%

Skeleton-based ResNet (section 4.1) 2018 78.20% 85.60%

SPMF Inception-ResNet-222 (section 4.2) 2018 78.89% 86.15%

Enhanced-SPMF DenseNet (L = 100, k = 12) 2018 79.31% 86.64%

Enhanced-SPMF DenseNet (L = 250, k = 24) 2018 80.11% 86.82%

Enhanced-SPMF DenseNet (L = 190, k = 40) 2018 79.28% 86.68%

1964; Du, Wang, and Wang, 2015) helps improving the accuracy by 4.09%. This result vali-
dates our hypothesis above.

(a) (b)

FIGURE 4.26: Training loss and test accuracy of the proposed DenseNet (L = 100, k = 12)
on the SBU dataset (Yun et al., 2012a). FIGURE 4.26a shows the obtained result when trained
on SPMFs, while FIGURE 4.26b reports the obtained result when trained on Enhanced-
SPMFs. The symbols k and L denote the “growth rate” and the depth of the network, re-
spectively.

Visualization of deep feature maps

Different action classes have different discriminative characteristics. To better understand
the internal operation of the proposed deep networks and to study what they learned from
the skeleton-based representation, we input different Enhanced-SPMFs corresponding to
different action classes of the MSR Action3D dataset (Li, Zhang, and Liu, 2010) to the DenseNet
(L = 100 , k = 12) and visualize the individual feature maps learned by the network at the
end of a dense block (intermediate layer). We observe that the designed network is able to
extract discriminative features from the Enhanced-SPMF representations. This is expressed
through the color of each learned feature map, as can be seen in FIGURE 4.27. These discrim-
inative features play a key role in classifying actions.
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FIGURE 4.27: Visualization of feature maps learned by the proposed DenseNet (L = 100,
k = 12) from several samples of the MSR Action3D dataset (Li, Zhang, and Liu, 2010). Best
viewed in color.

Computational efficiency evaluation

In this section, we take the AS1 subset of MSR Action3D dataset (Li, Zhang, and Liu, 2010)
and the DenseNet (L = 100, k = 12) to evaluate the computational efficiency of the proposed
method. FIGURE 4.28 illustrates three main stages of the deep learning framework for learn-
ing and recognizing actions from skeleton sequences, including an encoding process from
input skeleton sequences to color images (stage 1); a supervised training stage (stage 211);
and an inference stage (stage 3). With the implementation in Python using Keras and train-
ing on a single GeForce GTX 1080 Ti GPU, the proposed deep network that only has 6.0M
parameters takes less than six hours to reach convergence. During this stage, it takes 0.164
seconds per skeleton sequence. Latency required to predict a new skeleton sequence us-
ing the pre-trained model, including the stage 1 that is executed on a CPU and the stage 3
is about 74.8× 10−3 seconds per sequence. Additionally, it should be noted that the com-
putation of the Enhanced-SPMFs can be implemented and optimized on a GPU for faster
processing.

FIGURE 4.28: Three main stages of the proposed deep learning framework for recognizing
human actions from skeleton sequences.

TABLE 4.17: Execution time of the proposed deep learning framework.

Stage Average processing time (second/sequence)

1 20.8× 10−3 per sequence (Intel Core i7 3.2GHz CPU)

2 0.164 per sequence (GTX 1080 Ti GPU)

3 74.8× 10−3 per sequence (CPU + GPU time)

11Including the color enhancement process: SPMF→ Enhanced-SPMF
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Limitations

The use of the Savitzky-Golay filter (Savitzky and Golay, 1964) helps reduce the effect of
noise on the raw skeleton sequences. However, the proposed approach cannot overcome the
problem of missing data. In other words, as the Enhanced-SPMF is a global representation
for the whole skeleton sequence, data error of local fragments in the input sequences could
cut down the recognition rate. Another open problem of the proposed approach is how to
scope with Online Action Recognition (OAR) task. Specifically, how to detect and recognize
human actions from unsegmented streams in a continuous manner, where boundaries be-
tween different kinds of actions within the stream are unknown. A common solution for
OAR is the sliding window based methods (Kulkarni et al., 2015; Kviatkovsky, Rivlin, and
Shimshoni, 2014). These approaches consider the temporal coherence within the window for
prediction. We can also apply this idea to solve the current problem. E.g., during the online
inference phase, we use a sliding window on the original skeleton sequences or on image-
coded representations (i.e. Enhanced-SPMFs) and then predicting action by pretrained deep
learning model, as we showed in FIGURE 4.28 (stage 3). However, we understand that the
performance of this approach is sensitive to the window size. Either too large or too small
window size could lead to a significant drop in recognition performance. Another solution
is to use Temporal Attention Networks (Mnih, Heess, and Graves, 2014; Xu et al., 2015b;
Luong, Pham, and Manning, 2015; Zang et al., 2018) that incorporates temporal attention
model for video-based action recognition.

4.3.5 Conclusion

This section presents an efficient and effective deep learning framework for 3D human action
recognition from skeleton sequences. An advanced motion representation, called Enhanced-
SPMF, which captures the spatio-temporal information of skeleton movements and trans-
forms them into color images has been proposed. Different Deep Convolutional Neural Net-
works (D-CNNs) based on the DenseNet architecture have been designed and optimised to
learn and recognize actions from the proposed representation, in an end-to-end manner. We
used the Adaptive Histogram Equalization (AHE) technique to enhance the local textures of
color images and generate more discriminative features for learning and classification tasks.
Extensive empirical evaluations on three challenging public datasets demonstrate the effec-
tiveness of the proposed approach on both individual actions, interactions, multi-view and
large-scale datasets.

Since the beginning of our work and in order to compare it to the state of the art, we have
tested our methods on several academic datasets with existing ground truth. Cerema, which
is an institution belonging to Ministry of Ecology and Transport, has often the opportunity
to work with transport operators. During this PhD thesis, we had the opportunity to work
with Tisséo, main operator of Toulouse transport network. The initial idea is to implement
RGB-D sensors to detect some specific passengers’ behaviour like people jumping over the
turnstiles, sneaking under the turnstiles, and so on. All this is described in section 4.4.

4.4 CEMEST dataset

4.4.1 Introduction to CEMEST dataset

We have collected a new RGB-D dataset12, called CEMEST (CErema MEtro STation dataset)
using Kinect v2 sensor and carried out experiments on this dataset to verify the effective-
ness of the proposed method on a real-world dataset. The CEMEST was made at a metro
station in France without any control of the passenger behavior as well as illumination. It
contains three actions including both “normal” and “abnormal” behaviors: crossing normally
over the turnstiles, jumping over the turnstiles, and sneaking under the turnstiles. These three
behaviors are taken into account for acquisition because they have a significant impact on

12The dataset and its description are available at: https://sites.google.com/site/hhpham172/
image-processing-and-computer-vision/tisseo-cerema-dataset.

https://sites.google.com/site/hhpham172/image-processing-and-computer-vision/tisseo-cerema-dataset
https://sites.google.com/site/hhpham172/image-processing-and-computer-vision/tisseo-cerema-dataset
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monitoring and management in public transport. As an example, the French National Rail-
way Company (SNCF) reported that they loste500 million every year through people trying
to cheat the ticket system (The Local, 2015). In summary, this dataset provides RGB, depth
and skeletal data. The skeleton sequences are extracted by Kinect SDK with 25 key joints for
each subject, at a frame rate of 30 FPS. All recorded sequences are manually segmented and
labeled. FIGURE 4.29 shows some samples from the CEMEST.

(a) (b) (c)

(d) (e) (f)

FIGURE 4.29: Some samples from the CEMEST dataset: (a), (b) crossing over the barriers;
(c), (d) jumping over the ticket barriers; (e), (f) sneaking under ticket barriers.

4.4.2 Experiments on CEMEST

We carried out two experimental evaluations on this dataset. In the first setting, we ran-
domly chose 67% of the data as training set and the remaining 33% is used for testing. In
the second setting, the proposed networks are trained on a combination dataset, which is
created from a portion of the MSR Action3D (Wanqing, Zhengyou, and Zicheng, 2010) and
NTU RGB+D (Shahroudy et al., 2016) datasets. The full list of action classes in the com-
bination dataset is provided in APPENDIX A2. To ensure the number of samples in each
action class is balanced, we augmented samples in the MSR Action3D to match the size of
the larger dataset. The pre-trained model is then deployed on the CEMEST dataset in the
hope that transfer learning will help to solve overfitting problem when training on small
dataset. In both experiments, data augmentation (i.e. cropping, flipping, Gaussian filtering)
has been used.

4.4.3 Experimental results

On the CEMEST dataset, an accuracy of 91.18% has been made by the DenseNet-40 in the
first setting. In the second setting, transfer learning is used. The experimental results show
that the proposed method reached an accuracy of 95.70%, increasing the performance by
nearly 5% compared to the first experiment. This could be explained by the fact that since the
CEMEST dataset is quite small, it benefits from the knowledge transfer coming from larger
datasets such as the MSR Action3D and NTU RGB+D datasets. This result indicates that
the use of data augmentation and transfer learning is crucial to address the small amount
of samples in real-world datasets. FIGURE 4.30 shows learning curves of the proposed deep
learning networks on the CEMEST dataset from scratch (FIGURE 4.30a – FIGURE 4.30c), pre-
training on the combined dataset (FIGURE 4.30d – FIGURE 4.30f) and fine-tuning on CEMEST
dataset (FIGURE 4.30g – FIGURE 4.30i).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 4.30: Learning curves of the three proposed deep networks (DenseNet-16,
DenseNet-28, DenseNet-40) on CEMEST dataset when trained from scratch (a)-(b)-(c). Pre-
trained on the combined dataset (d)-(e)-(f); and fine-tuned on CEMEST dataset (g)-(h)-(i).
Our best configuration (DenseNet-40) achieved an accuracy of 91.18% when trained on the
CEMEST dataset from scratch. With the support of transfer learning, the proposed method
reached an accuracy of 95.70%, increasing the recognition accuracy by nearly 5%.

4.4.4 Conclusion

Our proposed deep learning framework for 3D action recognition from skeletal data was
valided on a real-world dataset (CEMEST) containing normal and abnormal human be-
haviours. Experimental results on this dataset show that the proposed deep learning-based
approach achieved promising results. One limitation of the CEMEST dataset is that it has
limited action classes (e.g. crossing normally over the turnstiles, jumping over the turnstiles, and
sneaking under the turnstiles). We plan to extend it with more action categories, which have
a significant impact on public safety such as fighting, stealing, falling down, accident, etc. and
under multiple viewpoints.

During the data collection period, we discovered the limits of RGB-D sensors when used
in this semi-open environment with a high-level of illumination. We also noticed that depth
sensors are only able to operate up to a limited distance and within a limited field of view.
We therefore decided, when the RGB-D sensors are not suitable for some specific environ-
ments, to estimate the 3D human poses from RGB sensors which are less sensitive to high
level of illumination and to long distances. All this work is described in the next chapter.
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Chapter overview: This chapter describes the possibility to directly extract 3D skeletons
from RGB sensors which are installed in many different sites. If we succeed to have accurate
3D skeletal data we will be able to benefit from all the frameworks developed and described
in the previous chapter such as the SPMF, Enhanced SPMF as well as the proposed deep
learning framework. The aim of this chapter is therefore to propose a 3D skeleton-based
action recognition approach without depth sensors. Specifically, we present a deep learning-
based multitask framework for joint 3D human pose estimation and action recognition from
RGB video sequences. Once the 3D estimated poses obtained from RGB sensors, the idea is
to use all the frameworks developed previously with the RGB-D sensors. Our approach
proceeds along two stages. First, we run a real-time 2D pose detector to determine the
precise pixel location of important keypoints of the body. A two-stream neural network is
then designed and trained to map detected 2D keypoints into 3D poses. Second, we deploy
the Efficient Neural Architecture Search (ENAS – Pham et al., 2018a) algorithm to find an
optimal network architecture that is used for modeling the spatio-temporal evolution of the
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estimated 3D poses via an image-based intermediate representation and performing action
recognition. Experiments on Human3.6M (Ionescu et al., 2014), MSR Action3D (Li, Zhang,
and Liu, 2010), and SBU Kinect Interaction (Yun et al., 2012a) datasets verify the effectiveness
of the proposed method on the targeted tasks. Moreover, we show that the proposed method
requires a low computing cost for training and inference.

5.1 Introduction

The rapid development of depth-sensing time-of-flight camera technology has helped in
dealing with this problem, which is considered complex for traditional cameras. Low-cost
and easy-to-use depth cameras are able to provide detailed 3D structural information of
human motion. In particular, most of the current depth cameras have integrated real-time
skeleton estimation and tracking frameworks (Ye and Yang, 2014), facilitating the collection
of skeletal data. This is a high-level representation of the human body, which is suitable
for the problem of motion analysis. Hence, exploiting skeletal data for 3D action recog-
nition opens up opportunities for addressing the limitations of RGB-based solutions and
many skeleton-based action recognition approaches have been proposed (Wang et al., 2012;
Xia, Chen, and Aggarwal, 2012a; Chaudhry et al., 2013; Vemulapalli, Arrate, and Chellappa,
2014; Ding et al., 2016). However, depth sensors have some significant drawbacks with
respect to 3D pose estimation. For instance, they are only able to operate up to a limited
distance (0.5m – 4.5m) and within a limited field of view. Moreover, a major drawback of
depth cameras is the inability to work in very illuminated scenes, especially with sunlight
(Zhang, 2012).

FIGURE 5.1: Overview of the proposed method. In the estimation stage, we first run Open-
Pose (Cao et al., 2017) – a real-time, state-of-the-art multi-person 2D pose detector to gener-
ate 2D human body keypoints. A deep neural network is then trained to produce 3D poses
from the 2D detections. In the recognition stage, the 3D estimated poses are encoded into
a compact image-based representation and finally fed into a deep convolutional network
for supervised classification task, which is automatically searched by the ENAS algorithm
(Pham et al., 2018a).

The main goal of this chapter is therefore to propose a 3D skeleton-based action recog-
nition approach without depth sensors. Specifically, we are interested in building a unified
deep framework for both 3D pose estimation and action recognition from RGB video se-
quences. As shown in FIGURE 5.1, our approach consists of two stages. In the first one,
estimation stage, the system recovers the 3D human poses from the input RGB video. In the
second one, recognition stage, an action recognition approach is developed and stacked on
top of the 3D pose estimator in a unified framework, where the estimated 3D poses are used
as inputs to learn the spatio-temporal motion features and predict action labels.

In the literature, state-of-the-art 2D pose detectors (e.g. Cao et al., 2017; Newell, Yang,
and Deng, 2016) are able to provide 2D poses with a high degree of accuracy in real-time.



5.2. Related work 85

Meanwhile, deep networks have proved their capacity to learn complex functions from high-
dimensional data. Hence, a simple network model can also learn a mapping to convert 2D
poses into 3D.

The effectiveness of the proposed method is evaluated on public benchmark datasets:
Human3.6M (Ionescu et al., 2014), MSR Action3D (Li, Zhang, and Liu, 2010), and SBU Kinect
Interaction (Yun et al., 2012a). Far beyond our expectations, the experimental results demon-
strate state-of-the-art performances on the targeted tasks and support our hypotheses above.
Furthermore, we show that this approach has a low computational cost. More precisely, our
main contributions in this chapter are the followings:

• First, we present a two-stream, lightweight neural network to recover 3D human poses
from RGB images provided by a monocular camera. Our proposed method achieves state-
of-the-art result on 3D human pose estimation task and benefits action recognition.

• Second, we propose to put an action recognition approach on top of the 3D pose
estimator to form a unified framework for 3D pose-based action recognition. It takes the
3D estimated poses as inputs, encodes them into a compact image-based representation and
finally feeds to a deep convolutional network, which is designed automatically by using a
neural architecture search algorithm. Surprisingly, our experiments show that we reached
state-of-the-art results on this task, even when compared with methods using depth cameras.

The rest of this chapter is organized as follows. We present a review of the related work
in Section 5.2. The proposed method is explained in Section 5.3. Experiments are provided
in Section 5.4 and Section 5.5 concludes the chapter.

5.2 Related work

This section reviews two main topics that are directly related to ours, i.e. performing 3D
pose estimation from RGB images and using the 3D estimated poses from RGB sensors for
the problem of human action recognition.

5.2.1 3D human pose estimation from a single RGB camera

The problem of 3D human pose estimation has been intensively studied in the recent years.
Almost all early approaches for this task were based on feature engineering (Sminchisescu,
2006; Ramakrishna, Kanade, and Sheikh, 2012; Ionescu et al., 2014), while the current state-
of-the-art methods are based on deep neural networks (Li and Chan, 2014; Tekin et al., 2016;
Pavlakos et al., 2017; Pavllo et al., 2018; Mehta et al., 2017b; Katircioglu et al., 2018). Many
of them are regression-based approaches that directly predict 3D poses from RGB images
via 2D/3D heatmaps. For instance, Li and Chan, 2014 designed a deep convolutional net-
work for human detection and pose regression. The regression network learns to predict 3D
poses from single images using the output of a body part detection network. Tekin et al.,
2016 proposed to use a deep network to learn a regression mapping that directly estimates
the 3D pose in a given frame of a sequence from a spatio-temporal volume centered on it.
Pavlakos et al., 2017 used multiple fully convolutional networks to construct a volumetric
stacked hourglass architecture, which is able to recover 3D poses from RGB images. Pavllo
et al., 2018 exploited a temporal dilated convolutional network (Fisher and Vladlen, 2015)
for estimating 3D poses. However, this approach led to a significant increase in the number
of parameters as well as the required memory. Mehta et al., 2017b introduced a real-time
approach to predict 3D poses from a single RGB camera. They used ResNets (Kaiming et al.,
2016) to jointly predict 2D and 3D heatmaps as regression tasks. Recently, Katircioglu et al.,
2018 introduced a deep regression network for predicting 3D human poses from monoc-
ular images via 2D joint location heatmaps. This architecture is in fact an overcomplete
autoencoder that learns a high-dimensional latent pose representation and accounts for joint
dependencies, in which a Long Short-Term Memory network (Hochreiter and Schmidhuber,
1997) is used to enforce temporal consistency on 3D pose predictions.
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To the best of our knowledge, several studies (Pavlakos et al., 2017; Mehta et al., 2017b;
Katircioglu et al., 2018) stated that regressing the 3D pose from 2D joint locations is difficult
and not enough accurate. However, motivated by Martinez et al., 2017, we believe that a
simple neural network can learn effectively a direct 2D-to-3D mapping. Therefore, this work
aims at proposing a simple, effective and real-time approach for 3D human pose estimation
that benefits action recognition. To this end, we design and optimize a two-stream deep
neural network that performs 3D pose predictions from the 2D human poses. These 2D
poses are generated by a state-of-the-art 2D detector that is able to run in real-time for mul-
tiple people. We empirically show that although the proposed approach is computationally
inexpensive, it is still able to improve the state-of-the-art.

5.2.2 3D pose-based action recognition from RGB sensors

In the literature, 3D human pose estimation and action recognition are closely related. How-
ever, both problems are generally considered as two distinct tasks (Chéron, Laptev, and
Schmid, 2015). Although some approaches have been proposed for tackling the problem of
jointly predicting 3D poses and recognizing actions in RGB images or video sequences (Yao
and Fei-Fei, 2010; Nie, Xiong, and Zhu, 2015; Luvizon, Picard, and Tabia, 2018), they are
data-dependent and require a lot of feature engineering, except the work of Luvizon, Picard,
and Tabia, 2018. Unlike in previous studies, we propose a multitask learning frameworks
for 3D pose-based action recognition by reconstructing 3D skeletons from RGB images and
exploiting them for action recognition in a joint way. Experimental results on public and
challenging datasets show that our framework is able to solve the two tasks in an effective
way.

5.3 Proposed method

In this section, our approach for 3D human pose estimation is presented. We then introduce
our solution for 3D pose-based action recognition.

5.3.1 Problem definition

Given an RGB video clip of a person who starts to perform an action at time t = 0 and
ends at t = T, the problem studied in this work is to generate a sequence of 3D poses
P = (p0, ..., pT), where pi ∈ R3×M, i ∈ {0, ..., T} at the estimation stage. The generated P is
then used as input for the recognition stage to predict the corresponding action label A by a
supervised learning model. See FIGURE 5.1 for an illustration of the problem.

5.3.2 Deep learning model for 3D human pose estimation from RGB im-
ages

Given an input RGB image I ∈ RW×H×3, we aim to estimate the body joint locations in
the 3-dimensional space, noted as p̂3D ∈ R3×M. To this end, we first run the state-of-the-art
human 2D pose detector, namely OpenPose, which is based on a multi-stage CNN algorithm
(Cao et al., 2017), to produce a series of 2D keypoints p2D ∈ R2×N . To recover the 3D joint

locations, we try to learn a direct 2D-to-3D mapping fr: p2D
fr7−→ p̂3D. This transformation can

be implemented by a deep neural network in a supervised manner

p̂3D = fr(p2D, θ), (5.1)

where θ is a set of trainable parameters of the function fr. To optimize fr, we minimize the
prediction error over a labelled dataset of C poses by solving the optimization problem

arg min
θ

1
C
C
∑
n=1
L( fr(xi), yi). (5.2)
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Here xi and yi are the input 2D poses and the ground truth 3D poses, respectively; L denotes
a loss function. In our implementation the robust Huber loss (Huber, 1992) is used to deal
with outliers.

Network design

State-of-the-art deep learning architectures such as ResNet (Kaiming et al., 2016), Inception-
ResNet-v2 (Szegedy et al., 2015a), DenseNet (Huang et al., 2017), or NASNet (Barret and
Quoc, 2017) have achieved an impressive performance in supervised learning tasks with
high dimensional data, e.g. 2D or 3D images. However, the use of these architectures on
low dimensional data like the coordinates of the 2D human joints could lead to overfitting.
Therefore, our design is based on a simple and lightweight multilayer network architecture
without the convolution operations. In the design process, we exploit some recent improve-
ments in the optimization of the modern deep learning models (Kaiming et al., 2016; Huang
et al., 2017). Concretely, we propose a two-stream network. Each stream comprises linear
layers, Batch Normalization (BN – Ioffe and Szegedy, 2015), Dropout (Hinton et al., 2012),
SELU (Klambauer et al., 2017) and Identity connections (Kaiming et al., 2016). During the
training phase, the first stream takes the ground truth 2D locations as input. The 2D hu-
man joints predicted by OpenPose (Cao et al., 2017) are inputted to the second stream. The
outputs of the two streams are then averaged. FIGURE 5.2 illustrates our network design.
Note that learning with the ground truth 2D locations for both of these streams could lead
to a higher level of performance. However, training with the 2D OpenPose detections could
improve the generalization ability of the network and makes it more robust during the in-
ference, when only the 2D output of the OpenPose is used to deal with action recognition in
the wild.

FIGURE 5.2: Diagram of the proposed two-stream network for training our 3D pose esti-
mator.

5.3.3 Deep learning framework for 3D pose-based action recognition

In this section, we explain how to integrate the estimation stage with the recognition stage
in a unified framework. Specifically, the proposed recognition approach is stacked on top
of the 3D pose estimator. To explore the high-level information of the estimated 3D poses,
we encode them into a compact image-based representation. These intermediate represen-
tations are then fed to a Deep Convolutional Neural Network (D-CNNs) for learning and
classifying actions. More specifically, the spatio-temporal patterns of a 3D pose sequence are
transformed into a single color image as a global representation via the proposed Enhanced-
SPMF (see section 4.2).

In chapter 4, we have used three architectures: Resnet, Inception-Resnet-v2 and DenseNet.
The state of the art in deep learning for recognition tasks is moving very fast. When we be-
gan the work described in chapter 5, we discovered that some new architectures are setting
new state of the art on some common recognition datasets (e.g. CIFAR-10 (Krizhevsky, 2009)
or ImageNet (Krizhevsky, Sutskever, and Hinton, 2012b)). Then, we therefore decided to use
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them instead of the previous architectures. More specifically, for learning and classifying the
obtained images, we propose to use the Efficient Neural Architecture Search (ENAS – Pham
et al., 2018a) – a recent state-of-the-art technique for automatic design of deep neural net-
works. The ENAS is in fact an extension of an important advance in deep learning called
NAS (Barret and Quoc, 2017), which is able to automatize the designing process of convo-
lutional architectures on a dataset of interest. This method proposes to search for optimal
building blocks (called cells, including normal cells and reduction cells) and the final architec-
ture is then constructed from the best cells achieved. In NAS, an RNN is used. It first samples
a candidate architecture called child model. This child model is then trained to convergence
on the desired task and reports its performance. Next, the RNN uses the performance as a
guiding signal to find a better architecture. This process is repeated for many times, making
NAS computationally expensive and time-consuming (e.g. on CIFAR-10 (Krizhevsky, 2009),
NAS needs 4 days with 450 GPUs to discover the best architecture). ENAS has been pro-
posed to improve the efficiency of NAS. The key idea of ENAS (Pham et al., 2018a) is the use
of sharing parameters among child models, which helps reducing the time of training each
child model from scratch to convergence. State-of-the-art performance has been achieved
by ENAS on well known public datasets. We encourage the readers to refer to the original
paper (Pham et al., 2018a) for more details. FIGURE 5.3 illustrates the entire pipeline of our
approach for the recognition stage.

FIGURE 5.3: Illustration of the proposed approach for 3D human action recognition. Intead
of using skeletal data provided by depth sensors as described in chapter 4, we exploit in this
chapter the estimated 3D poses from RGB sensors.

5.4 Experiments

5.4.1 Datasets and settings

We evaluate the proposed method on three challenging datasets: Human3.6M, MSR Ac-
tion3D and SBU Kinect Interaction. The Human3.6M is used for evaluating 3D pose esti-
mation. Meanwhile, the other two datasets are used for validating action recognition. The
characteristics of each dataset are as follows.

Human3.6M (Ionescu et al., 2014): This is a very large-scale dataset containing 3.6 million
different 3D articulated poses captured from 11 actors for 17 actions, under 4 different view-
points. For each subject, the dataset provides 32 body joints, from which only 17 joints
are used for training and computing scores. In particular, 2D joint locations and 3D poses
ground truth are available for evaluating supervised learning models.

MSR Action3D (Li, Zhang, and Liu, 2010): This dataset contains 20 actions, performed by
10 subjects. Our experiment was conducted on 557 video sequences of the MSR Action3D,
in which the whole dataset is divided into three subsets: AS1, AS2, and AS3. There are 8
actions classes for each subset. Half of the data is selected for training and the rest is used
for testing. Section 4.1 provides more details about the MSR Action3D.

SBU Kinect Interaction (Yun et al., 2012a): This dataset contains a total of 300 interactions,
performed by 7 participants for 8 actions. This is a challenging dataset due to the fact that it
contains pairs of actions that are difficult to distinguish such as exchanging objects – shaking
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hands or pushing – punching. We randomly split the whole dataset into 5 folds, in which 4
folds are used for training and the remaining 1 fold is used for testing. More details about
this dataset can be found in section 4.3.

5.4.2 Implementation details

The proposed networks were implemented in Python with Keras/TensorFlow backend. The
two streams of the 3D pose estimator are trained separately with the same hyperparameters
setting, in which we use mini-batches of 128 poses with 0.25 dropout rate. The weights are
initialized by the He initialization (He et al., 2015). Adam optimizer (Kingma and Ba, 2014)
is used with default parameters. The initial learning rate is set to 0.001 and is decreased by
a factor of 0.5 after every 50 epochs. The network is trained for 300 epochs from scratch on
the Human3.6M dataset (Ionescu et al., 2014). For action recognition task, we run OpenPose
(Cao et al., 2017) to generate 2D detections on MSR Action3D (Li, Zhang, and Liu, 2010) and
SBU Kinect Interaction (Yun et al., 2012a). The pre-trained 3D pose estimator on Human3.6M
(Ionescu et al., 2014) is then used to provide 3D poses in which the input data are the 2D
poses provided by the OpenPose. We use standard data pre-processing and augmentation
techniques such as randomly cropping and flipping on these two datasets due to their small
sizes. To discover optimal recognition networks, we use ENAS (Pham et al., 2018a) with
the same parameter setting as the original work. Concretely, the shared parameters ω are
trained with Nesterov accelerated gradient descent (Yurii, 1983) using Cosine learning rate
(Ilya and Frank, 2016). The candidate architectures are initialized by He initialization (He
et al., 2015) and trained by Adam optimizer (Kingma and Ba, 2014) with a learning rate of
0.00035. Additionally, each search is run for 200 epochs.

5.4.3 Experimental results and comparison

Evaluation on 3D pose estimation

We evaluate the effectiveness of the proposed 3D pose estimation network using the stan-
dard protocol of the Human3.6M dataset (Ionescu et al., 2014; Pavlakos et al., 2017; Martinez
et al., 2017; Mehta et al., 2017b). Five subjects S1, S5, S6, S7, S8 are used for training and the
rest two subjects S9, S11 are used for evaluation. Experimental results are reported by the
average error in millimeters between the ground truth and the corresponding predictions
over all joints. The results show that our method outperforms the previous best result from
the literature (Martinez et al., 2017) by 3.1mm, corresponding to an error reduction of 6.8%
even when combining the ground truth 2D locations with the 2D OpenPose detections. This
result proves that our network design can learn to recover the 3D pose from the 2D joint
locations with a low error rate, which to the best of our knowledge, has established a new
state-of-the-art on 3D human pose estimation (see TABLE 5.1).

FIGURE 5.4: Visualization of 3D output of the estimation stage with some samples on the
test set of Human3.6M (Ionescu et al., 2014). For each example, from left to right are 2D
poses, 3D ground truths and our 3D predictions, respectively.

Evaluation on 3D action recognition

In this section, we present our experimental results on the task of action recognition. We
compare the obtained results with several state-of-the-art approaches. At this step, the in-
put of deep learning networks are the estimated 3D poses from RGB images, provided by
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TABLE 5.1: Experimental results and comparison with previous state-of-the-art 3D pose
estimation approaches on the Human3.6M dataset (Ionescu et al., 2014). Results are reported
by the average error in millimeters between the ground truth and the corresponding predic-
tions over all joints.

Method Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg

Ionescu et al., 2014† 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1

Du et al., 2016? 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5

Tekin et al., 2016 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0

Park, Hwang, and Kwak, 2016? 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3

Zhou et al., 2016? 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Xingyi et al., 2016? 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3

Pavlakos et al., 2017 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Mehta et al., 2017a? 67.4 71.9 66.7 69.1 71.9 65.0 68.3 83.7 120.0 66.0 79.8 63.9 48.9 76.8 53.7 68.6

Martinez et al., 2017? 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9

Shuang, Xiao, and Yichen, 2018 52.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 53.4 67.2 54.8 53.4 47.1 61.6 59.1

Luvizon, Picard, and Tabia, 2018 49.2 51.6 47.6 50.5 51.8 48.5 51.7 61.5 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2

Martinez et al., 2017† 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Ours†,? 36.6 43.2 38.1 40.8 44.4 51.8 43.7 38.4 50.8 52.0 42.1 42.2 44.0 32.3 35.9 42.4

The symbol ? denotes that a 2D detector was used and the symbol † denotes the ground truth 2D joint locations
were used.

the proposed 3D estimator. For 3D action recognition evaluation, we followed the same
protocol as described in chapter 4. The main aim here is to compare our proposed method
to those of the state of the art. We report experimental results using recognition accuracy
rate (%) on two datasets: the MSR Action3D dataset (Li, Zhang, and Liu, 2010) and the SBU
Kinect Interaction dataset (Yun et al., 2012b). TABLE 5.2 shows results and comparisons with
state-of-the-art methods on the MSR Action3D dataset (Li, Zhang, and Liu, 2010). The ENAS
algorithm (Pham et al., 2018a) is able to explore a diversity of network architectures and the
best design is identified based on its validation score. Thus, the final architecture achieved
a total average accuracy of 97.98% over three subset AS1, AS2 and AS3. This result outper-
forms many previous studies (Li, Zhang, and Liu, 2010; Chen, Liu, and Kehtarnavaz, 2013;
Vemulapalli, Arrate, and Chellappa, 2014; Du, Wang, and Wang, 2015; Liu et al., 2016b;
Wang et al., 2016b; Weng, Weng, and Yuan, 2017; Xu et al., 2015a; Lee et al., 2017), and
among them, many are depth sensor-based approaches. APPENDIX B3 provides a schematic
diagram of the best cells and optimal architecture found by ENAS on the AS1 subset (Li,
Zhang, and Liu, 2010). For the SBU Kinect Interaction dataset (Yun et al., 2012b), the best
model achieved an accuracy of 96.30%, as shown in TABLE 5.3. We observe that by only
using the 3D predicted poses, we are able to outperform previous works reported in Song
et al., 2017; Liu et al., 2016b; Weng et al., 2018; Ke et al., 2017; Tas and Koniusz, 2018; Wang
and Wang, 2017; Liu et al., 2018. The comparison with the Enhanced-SPMF DenseNet that
was described in section 4.3 leads to a slight lower accuracy (97.98% versus 99.10%). This
means that the estimated 3D pose provided by our method is comparable to 3D skeletal data
provided by Kinect v2 sensor.

5.4.4 Computational efficiency evaluation

On a single GeForce GTX 1080Ti GPU with 11GB memory, the runtime of OpenPose (Cao et
al., 2017) is less than 0.1s per frame on a image size of 800 × 450 pixels. On the Human3.6M
dataset (Ionescu et al., 2014), the 3D pose estimation stage takes around 15ms to complete a
pass (forward + backward) through each stream with a mini-batch of size 128. Each epoch
was done within 3 minutes. For the action recognition stage, our implementation of ENAS
algorithm takes about 2 hours to find the final architecture (∼2.3M parameters) on each
subset of MSR Action3D dataset (Li, Zhang, and Liu, 2010), whilst it takes around 3 hours
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TABLE 5.2: Test accuracies (%) on the MSR Action3D dataset (Li, Zhang, and Liu, 2010).

Method AS1 AS2 AS3 Aver.

Li, Zhang, and Liu, 2010 72.90 71.90 71.90 74.70

Chen, Liu, and Kehtarnavaz, 2013 96.20 83.20 92.00 90.47

Vemulapalli, Arrate, and Chellappa, 2014 95.29 83.87 98.22 92.46

Du, Wang, and Wang, 2015 99.33 94.64 95.50 94.49

Liu et al., 2016b N/A N/A N/A 94.80

Wang et al., 2016b 93.60 95.50 95.10 94.80

Weng, Weng, and Yuan, 2017 91.50 95.60 97.30 94.80

Xu et al., 2015a 99.10 92.90 96.40 96.10

Lee et al., 2017 95.24 96.43 100.0 97.22

Enhanced-SPMF DenseNet (L=250, k=24) 98.83 99.06 99.40 99.10

Proposed method 97.87 96.81 99.27 97.98

TABLE 5.3: Test accuracies (%) on the SBU Kinect Interaction dataset (Yun et al., 2012b).

Method Accuracy (%)

Song et al., 2017 91.51

Liu et al., 2016b 93.30

Weng et al., 2018 93.30

Ke et al., 2017 93.57

Tas and Koniusz, 2018 94.36

Wang and Wang, 2017 94.80

Liu et al., 2018 94.90

Zhang et al., 2019 (using VA-RNN) 95.70

Zhang et al., 2019 (using VA-CNN) 97.50

Enhanced-SPMF DenseNet (L=250,k=24) 97.86

Proposed method 96.30

on the SBU Kinect Interaction dataset (Yun et al., 2012b) to discover the best architecture
(∼3M parameters).

5.5 Conclusion

In this chapter, we presented a unified deep learning framework for joint 3D human pose es-
timation and action recognition from RGB video sequences. The proposed method first runs
a state-of-the-art 2D pose detector to estimate 2D locations of body joints. A deep neural net-
work is then designed and trained to learn a direct 2D-to-3D mapping and predict human
poses in 3D space. Experimental results demonstrated that the 3D human poses can be effec-
tively estimated by a simple network design and training methodology over 2D keypoints.
We also introduced a novel action recognition approach based on a compact image-based
representation and automated machine learning, in which an advanced neural architecture
search algorithm is exploited to discover the best performing architecture for each recogni-
tion task. Our experiments on public and challenging action recognition datasets indicated
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that the proposed framework is able to reach state-of-the-art performance, whilst requir-
ing low computation time for training. Despite that, our method naturally depends on the
quality of the output of the 2D detectors. Hence, a limitation is that it cannot estimate 3D
poses in the case the 2D detector failure. For the time being, we do not know if the failure is
frequently happening or not. This a perspective of work.
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Chapter overview: We summarize and discuss in this chapter the key findings of this thesis,
tying together the various tasks carried and the obtained results. We then outline the limi-
tations of the proposed approaches. Finally, we end the thesis by providing some research
directions for future work.

6.1 Discussion

Our main goal in this thesis was to propose, develop and validate different deep learning-
based approaches for determining which human actions occur from monocular RGB-D video
sequences. To tackle this problem, we first reviewed the most prominent state-of-the-art
deep learning algorithms applied to the recognition of human actions in videos (Chapter
3). We found that Deep Convolutional Neural Networks (D-CNNs) based approaches are
among the best performing learning models to address this task. We then proposed a new
approach for skeleton-based action recognition using D-CNNs from skeletal data provided
by depth cameras (Chapter 4). Two key questions had been studied and addressed. First,
how to efficiently represent the spatio-temporal patterns of skeletal data for fully exploit-
ing the capacity in learning high-level representations of D-CNNs. Second, how to design a
powerful D-CNN architecture that is able to learn discriminative features from the proposed
representation for classification task. As a result, we introduced two new 3D motion repre-
sentations called SPMF (“Skeleton Posture-Motion Feature”) and Enhanced-SPMF that encode
skeleton poses and their motions into color images. The proposed representations (called
action maps) were then fed into state-of-the-art D-CNNs such as ResNet (Kaiming et al.,
2016), Inception-ResNet-v2 (Szegedy et al., 2017), DenseNet (Huang et al., 2017) and ENAS
(Pham et al., 2018a) for feature learning and recognition. Experimental results on various
public and challenging human action recognition datasets including MSR Action3D (Wan-
qing, Zhengyou, and Zicheng, 2010), KARD (Gaglio, Re, and Morana, 2014), SBU Kinect
Interaction (Yun et al., 2012a), and NTU-RGB+D (Shahroudy et al., 2016) showed the effec-
tiveness of the proposed representations as well as the deep learning frameworks.

Our study also showed that the Enhanced-SPMF was able to capture the spatio-temporal
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motion features better than the SPMF. Specifically, we carried out an ablation study by train-
ing and evaluating a DenseNet (Huang et al., 2017) on both the SPMF and Enhanced-SPMF
provided by the SBU Kinect Interaction dataset (Yun et al., 2012a), in which the same hyper-
parameters setting and training methodology were applied (Chapter 4). The experimental
results indicated that learning on the Enhanced-SPMF led to a better recognition perfor-
mance. This proved that the use of the AHE algorithm (Pizer et al., 1987) and the Savitzky-
Golay smoothing filter (Savitzky and Golay, 1964) helped improving the accuracy.

For learning and classification tasks, we designed different D-CNN architectures based
on the ResNet (Kaiming et al., 2016), Inception-ResNet-v2 (Szegedy et al., 2017), DenseNet
(Huang et al., 2017) and Effective Neural Architecture Search (ENAS - Pham et al., 2018a)
to extract robust features from color–coded images and classify them into classes. We pose
the question how to identify which is the best performing architectures? It is difficult but
interesting to try to answer this question. For example, TABLE 6.1 shows that the proposed
DenseNet (L = 250, k = 24) got the best accuracies on the NTU-RGB+D dataset (Shahroudy
et al., 2016). However, the DenseNet model performed worse than the proposed ResNet-44
on smaller dataset like the MSR Action3D (Wanqing, Zhengyou, and Zicheng, 2010). As
we have explained in Chapter 4, learning behaviors of deep neural networks are heavily
dependent on the size and distribution of input data.

TABLE 6.1: Summary of the proposed models and their experimental results.

Model Input MSR Action3D

(overall)

KARD

(overall)

SBU Kinect

(overall)

NTU-RGB+D

(cross-subject)

NTU-RGB+D

(cross-view)

ResNet-44 Image-coded 99.90% 99.98% N/A 77.20% 84.80%

Inception-ResNet-222 SPMF 98.56% N/A N/A 78.89% 86.15%

DenseNet Enhanced-SPMF 99.10% N/A 96.67% 80.11% 86.82%

ENAS Estimated 3D pose +

Enhanced-SPMF

97.98% N/A 96.30% N/A N/A

In this thesis, we also conducted research on the problem of 3D human pose estimation
from monocular RGB video sequences and used the estimated 3D poses for action recogni-
tion task. As shown is TABLE 6.1, the ENAS algorithm (Pham et al., 2018a) was trained on the
estimated 3D poses (with Enhanced-SPMF) and achieved an accuracy of 97.98% on the MSR
Action3D dataset (Wanqing, Zhengyou, and Zicheng, 2010) and 96.30% on the SBU Kinect
Interaction dataset (Yun et al., 2012b), respectively. Compared to the proposed DenseNet
that was trained on skeleton sequences provided by Kinect cameras, the recognition ac-
curacies provided by the ENAS (Pham et al., 2018a) on the estimated 3D poses are lower.
However, these differences are quite small. In TABLE 6.1 some tests were not carried out for
time reason and also for the size of the datasets. For example, for ENAS model – the NTU-
RGB+D dataset was so big that it would have taken around several months to process them.
Always for a question of time, we made the choice to use the SBU Kinect and MSR Action3D
datasets to evaluate the effectiveness of DenseNet with Enhanced-SPMF and ENAS models.

In addition, we collected and introduced the CEMEST – a new RGB-D dataset depicting
passenger behaviors in public transport. The dataset consists of 203 untrimmed real-world
surveillance videos of realistic normal and anomalous events. We have made this dataset
public1 in order to encourage the development of the field. We achieved promising results
on real conditions of the CEMEST with the proposed DenseNet-28 trained on the Enhanced-
SPMF representation, in which some data augmentation and transfer learning techniques
were exploited. Now, we are continuing to conduct new experiments with the proposed
3D pose estimation and recognition approach on this dataset. The obtained results will be
reported in our next publication.

1https://sites.google.com/site/hhpham172/image-processing-and-computer-vision/
tisseo-cerema-dataset.

https://sites.google.com/site/hhpham172/image-processing-and-computer-vision/tisseo-cerema-dataset
https://sites.google.com/site/hhpham172/image-processing-and-computer-vision/tisseo-cerema-dataset
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6.2 Limitations

Although the effectiveness of the proposed methods have been proven in terms of accuracy
and speed, some limitations are still remaining, which requires more research works to over-
come.

Firstly, the proposed models are not suitable to online data (i.e. “Online Action Recog-
nition” or OAR) that aims to detect and recognize actions from unsegmented streams in a
continuous manner, where boundaries between different kinds of actions within the stream
are unknown. For the time being, our study focused on recognizing actions from segmented
sequences of input data, with each segment corresponding to one single action or inter-
action. A common approach for an OAR problem that we could consider is the “sliding
window-based methods” (Kviatkovsky, Rivlin, and Shimshoni, 2014; Kulkarni et al., 2015; Zhu
et al., 2016a). These approaches consider the temporal coherence within the window for
prediction. This idea can also be applied to solve our problem. Specifically, the recognition
system may have two main phases including offline training and online recognition. During
the training phase, we train the proposed deep neural networks from segmented sequences
in a supervised manner. The spatio-temporal features of actions will be learned and the
learned weights will be stored as a pre-trained model. During the online recognition phase,
we use a sliding window on the original skeleton sequences or on the original image-coded
representation to predict actions by the pre-trained model. However, we understand that
the performance of these methods are sensitive to the window size and a compromise has
to be found. Ìf the window is too small or too large this could lead to a significant drop in
performance.

Secondly, the proposed D-CNNs such as ResNets (Kaiming et al., 2016), Inception-ResNet-
v2 (Szegedy et al., 2017), DenseNets (Huang et al., 2017) are very deep networks that contain
millions of trainable parameters. Hence, exploiting these architectures on CPUs and mobile
platforms is unrealistic.

Thirdly, the proposed method for 3D pose estimation from RGB video sequences natu-
rally depends on the quality of the output of the 2D detectors. Therefore, a limitation is that
it cannot accurately estimate 3D poses from a bad 2D pose estimator. This problem could be
tackled by adding more visual information such as color silhouettes of people to the network
in order to further gains in performance. In that case, the processing time will be increased.

Finally, we have collected and introduced the CEMEST dataset. We recognized that the
CEMEST is a small dataset and training supervised learning algorithms such as D-CNNs
could easily lead to overfitting.

6.3 Future work

There are many potential research directions that could be considered to expand the current
approach. Here we outline some of the most promising ideas.

6.3.1 Recurrent Neural Networks with Long Short-Term Memory units

Recurrent Neural Networks and Long Short-Term Memory (RNN-LSTM) units are widely
used for time series modeling and forecasting. This kind of network can completely be used
for modeling the spatio-temporal features contained in the proposed SPMF and Enhanced-
SPMF representations. An RNN-LSTM can be used to model the temporal dependencies
between the 3D positional configurations of human body joints. In particular, some new
gating mechanisms or trust gates for LSTM such as the works of (Veeriah, Zhuang, and Qi,
2015; Liu et al., 2016b) allow modeling the derivatives of the memory states and explore the
salient action patterns. In fact, the SPMF and Enhanced-SPMF are motion maps that contain
both spatial and temporal information of human actions. The elements of the SPMF and
Enhanced-SPMF (e.g. rows) can be considered as temporal signals and their features can be
modeled by an RNN-LSTM.
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6.3.2 Temporal Convolutional Network

The work of Bai, Kolter, and Koltun, 2018 has proven that temporal convolutional architec-
tures (see FIGURE 6.1) can outperform recurrent networks on tasks such as audio synthesis
and machine translation. Given a new sequence modeling task or dataset, the authors of
this research indicated that a simple convolutional architecture could outperform canonical
recurrent networks such as RNN-LSTMs across a diverse range of tasks and datasets, while
demonstrating longer effective memory.

FIGURE 6.1: Illustration of a Temporal Convolutional Network (Bai, Kolter, and Koltun,
2018): (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size k =
3. The receptive field is able to cover all values from the input sequence. (b) TCN residual
block. An 1x1 convolution is added when residual input and output have different dimen-
sions. (c) An example of residual connection in a TCN. The blue lines are filters in the resid-
ual function, and the green lines are identity mappings.

6.3.3 Multi-Stream Deep Neural Networks

The proposed 3D motion representations (SPMF and Enhanced-SPMF) are constructed from
two action features: static postures and temporal motions. The two features were combined
into a unified color image representation and fed into D-CNNs for representation learning.
This combination could make the representation learning process more complicated2. An
alternative solution is to encode each type of feature into an image and build a two-stream
deep neural network framework that accepts each channel as an input. The final layer of
each stream will be fused later to improve the performance.

6.3.4 Attention Temporal Networks

The Attention Temporal Networks (ATNs – Zang et al., 2018; Li et al., 2019) are also a
promising research direction to further boost the performance of human action recognition
in videos. Instead of processing all sampled video frames equally, an ATN network (Zang
et al., 2018) has an attention mechanism that allows to automatically focus more heavily on
the semantically critical segments and could lead to reduce less important video frames as
well as noise. This idea can be also applied for skeletal data provided by RGB+D sensors as
explained in the previous chapters or 3D poses estimated from 2D poses coming from RGB
sensor (Xie et al., 2018; Si et al., 2019). For instance, Si et al., 2019 proposed a deep network
architecture called AGC-LSTM within an attention mechanism as shown in FIGURE 6.2. This
architecture is able to capture discriminative features in spatio-temporal dynamics and ex-
plore the co-occurrence relationship between spatial and temporal domains. By this way,
the AGC-LSTM has the ability to learn the high-level semantic representation by selecting
discriminative spatial information from skeleton joints.

2Personal communication with Pablo Zegers from the University of the Andes, Santiago, Chile.
Pablo recommended to me that I should split the SPMF and Enhanced-SPMF maps into two indepen-
dent channels and building a two stream-CNN for feature learning and recognition tasks.
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FIGURE 6.2: Structure of the AGC-LSTM layer (Si et al., 2019): AGC-LSTM layers are used
to model spatial-temporal features of skeletal movements. The graph convolutional oper-
ator within AGC-LSTM can not only effectively capture discriminative features in spatio-
temporal dynamics but also explore the co-occurrence relationship between spatial and tem-
poral domains, which provides richer motion features for recognition task.
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Appendix A

Datasets

A1. List of action classes from the NTU-RGB+D dataset

Below is the list of the action classes provided by the NTU-RGB+D dataset (Shahroudy et al.,
2016). It contains 60 different actions captured by Kinect v2 sensors:

Drinking, eating, brushing teeth, brushing hair, dropping, picking up, throwing, sitting down, standing up,
clapping, reading, writing, tearing up paper, wearing jacket, taking off jacket, wearing a shoe, taking off a shoe,
wearing on glasses, taking off glasses, puting on a hat/cap, taking off a hat/cap, cheering up, hand waving, kicking
something, reaching into self pocket, hopping, jumping up, making/answering a phone call, playing with phone,
typing, pointing to something, taking selfie, checking time, rubbing two hands together, bowing, shaking head,
wiping face, saluting, putting palms together, crossing hands in front, sneezing/coughing, staggering, falling
down, touching head, touching chest, touching back, touching neck, vomiting, fanning self, punching/slapping
other person, kicking other person, pushing other person, patting other’s back, pointing to the other person,
hugging, giving something to other person, touching other person’s pocket, handshaking, walking towards each
other, and walking apart from each other.

A2. List of action classes of the combination dataset

To improve the learning performance of the proposed deep networks on the CEMEST dataset,
we prepared a dataset as the combination of the public action datasets and exploited trans-
fer learning. Specifically, the following action classes from the MSR Action 3D (Wanqing,
Zhengyou, and Zicheng, 2010) and NTU-RGB+D (Shahroudy et al., 2016) datasets were used
for training the proposed DenseNets before fine-tuning on the CEMEST:

Walking, bend, jogging, jumping up, forward punch, high arm wave, hand clap, dropping, pick-
ing up, sitting down, standing up, hand waving, pointing to something, staggering, falling down,
punching/slapping other person, kicking other person, pushing other person, patting others back, giv-
ing something to other person, touching other persons pocket.

To ensure the number of samples in each action class is balanced, we augmented samples
in the MSR Action3D (Wanqing, Zhengyou, and Zicheng, 2010) to match the size of the
larger dataset. The network configurations were kept the same as the previous experiments.
More specifically, three configurations including DenseNet-16, DenseNet-28, and DenseNet-
40 were trained with a learning rate of 3e− 4, a batch size of 64 and training for 250 epochs.
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Network Architectures

B1. ResNets

This section describes the network architectures in detail. To build 20-layer, 32-layer, 44-
layer, 56-layer, and 110-layer networks, we stack the proposed ResNet building units as
following:

Baseline 20-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Global mean pooling
FC layer with n units where n is equal to the number of action class
Softmax layer
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Baseline 32-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual block: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Global mean pooling
FC layer with n units where n is equal to the number of action class
Softmax layer

Baseline 44-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Global mean pooling
FC layer with n units where n is equal to the number of action class
Softmax layer
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Baseline 56-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Global mean pooling
FC layer with n units where n is equal to the number of action class
Softmax layer
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Baseline 110-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters
Global mean pooling
FC layer with n units where n is equal to the number of action class
Softmax layer
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B2. Inception-ResNet-v2

FIGURE B.1: The proposed Inception-ResNet architectures. The symbols ηA, ηB and ηC de-
note the number of building blocks Inception-ResNet-A, Inception-ResNet-B, and Inception-
ResNet-C, respectively. The symbol κ indicates the number of neurons in Softmax layer,
corresponding to the number of action classes. The details about blocks are provided in FIG-
URE B.2, FIGURE B.3, FIGURE B.4, FIGURE B.5, and FIGURE B.6.

TABLE B.1 below describes in details the network configurations SPMF Inception-ResNet-
121, SPMF Inception-ResNet-222, and SPMF Inception-ResNet-242. To measure the com-
plexity of networks, we report the number of network parameters.

TABLE B.1: The proposed network configurations and their complexities (M = × 106).

Network architecture ηA ηB ηC # param.

SPMF Inception-ResNet-121 1 2 1 1.35M
SPMF Inception-ResNet-222 2 2 2 1.59M
SPMF Inception-ResNet-242 2 4 2 1.86M

FIGURE B.2: The schema for STEM block. The symbol +© denotes the concatenation oper-
ator.
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FIGURE B.3: The schema for Inception-ResNet-A block. The symbol +© denotes the con-
catenation operator.

FIGURE B.4: The schemas for Inception-ResNet-B (left) and Inception-ResNet-C (right)
blocks. The symbol +© denotes the concatenation operator.

FIGURE B.5: The schema for Reduction-A block. The symbol +© denotes the concatenation
operator.
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FIGURE B.6: The schema for Reduction-B block. The symbol +© denotes the concatenation
operator.

B3. Deep learning architecture discovered by ENAS algorithm

(a) (b) (c)

FIGURE B.7: Diagram of the top performing normal cell (a) and reduction cell (b) discovered
by ENAS (Pham et al., 2018a) on AS1 subset (Li, Zhang, and Liu, 2010). They were then
used to construct the final network architecture (c). We recommend the interested readers to
Pham et al., 2018a to better understand this procedure.
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Savitzky-Golay Smoothing Filter

Savitzky-Golay (S-G) filter is a low-pass filter based on local least-squares polynomial ap-
proximation that is often used to smooth noisy data. The 3D skeleton joints obtained from
depth cameras can be considered as a series of equally spaced data in the time domain, ap-
plying S-G filter on raw skeletal data helps reduce the level of noise while maintaining the
3D geometric characteristics of the input sequences.
Considering a sequence of N = 2M + 1 input data points x[n] centered at n = 0, given by

x = [x−M, ..., x−1, x0, x1, ..., xM]T . (C.1)

The N data samples of x can be fitted by a polynomial

p(n) =
N

∑
k=0

cknk. (C.2)

To best fit the given data x, Savitzky and Golay, 1964 proposed a method of data smoothing
by finding the vector of polynomial coefficients c = [c0, c1, ..., cN ]

T that minimizes the mean-
squares approximation error

EN =
M

∑
n=−M

(
N

∑
k=0

cknk − x[n]

)2

. (C.3)

To this end, one solution is to determine a set of coefficients that satisfies the partial deriva-
tive equation is equal to zero

∂EN
∂ai

=
M

∑
n=−M

2ni

(
N

∑
k=0

cknk − x[n]

)
= 0 with i = 0, 1, ..., N. (C.4)

Eq. (C.4) is equivalent to

N

∑
k=0

(
M

∑
n=−M

ni+k

)
ck =

M

∑
n=−M

nix[n]. (C.5)

Defining a matrix A = {αn,i} as the matrix with elements

αn,i = ni (C.6)

where −M ≤ n ≤ M and i = 0, 1, ..., N. The matrix A is called the design matrix for the
polynomial approximation problem. Note that, the transpose of A is AT = {αi,n} and the
product matrix B = ATA is a symmetric matrix with elements

βi,k =
M

∑
n=−M

αi,nαn,k =
M

∑
n=−M

ni+k (C.7)
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Therefore, Eq. (C.5) can be rewritten in matrix form as

Bc = ATAc = ATx. (C.8)

The polynomial coefficients can be determined as

c = (ATA)−1(ATx ). (C.9)

For example, for smoothing by a 5-point quadratic polynomial with N = 5, M = −2,−1, 0, 1, 2,
the tth filtering result, yt is given by

yt =
−3xt−2 + 12xt−1 + 17xt + 12xt+1 − 3xt+2

35
. (C.10)

Eq. (C.10) above was used in our experiments to reduce the effect of noise on the raw skele-
ton data.
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Degradation phenomenon in
training very deep neural networks

Very deep neural networks demonstrate to have a high performance on many visual-related
tasks (Simonyan and Zisserman, 2014b; Szegedy et al., 2015b; Kaiming et al., 2016; Telgarsky,
2016). However, they are very difficult to optimize. One of the main challenges for train-
ing deeper networks is the vanishing and exploding gradient problems (Glorot and Bengio,
2010). Specifically, when the network is deep enough, the supervision signals from the out-
put layer can be completely attenuated or exploded on their way back towards the previous
layers. Therefore, the network cannot learn the parameters effectively. These obstacles can
be solved by recent advanced techniques in deep learning such as Normalized Initialization
(LeCun et al., 1998a) or Batch Normalization (Ioffe and Szegedy, 2015). When the deep net-
works start converging, a degradation phenomenon occurs. Due to this, the training and test
errors increase if more layers are added to a deep architecture. This phenomenon is called
by the degradation phenomenon. FIGURE D.1 shows an experimental result (Kaiming et al.,
2016) related to this phenomenon.

(a) (b)

FIGURE D.1: Degradation phenomenon during training D-CNNs. (a) Training error and
(b) test error on CIFAR-10 (Krizhevsky, 2009) with 20-layer and 56-layer CNNs reported by
Kaiming et al., 2016. The deeper network has higher error for both training and test phases.
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Version française résumée

Chapitre 1

Introduction

La reconnaissance des actions humaines joue un rôle important dans plusieurs systèmes in-
telligents d’analyse vidéo. Son objectif principal consiste à analyser automatiquement les
flux vidéo fournis par les capteurs optiques afin de reconnaître les actions qui se produisent
dans la scène observée. Ce sujet de recherche a été initialement motivé par le domaine des
représentations artistiques, la biomécanique et la perception du mouvement (Ivan, 2012).
Ensuite, il a été élargi à de nombreuses applications (Ranasinghe, Al Machot, and Mayr,
2016) comme les systèmes de surveillance intelligents (Wei Niu et al., 2004; Valera and Ve-
lastin, 2005; Weiyao Lin et al., 2008), l’interation homme-machine (Pickering, Burnham, and
Richardson, 2007; Sonwalkar et al., 2015), la santé (Zouba et al., 2009), ou la réalité virtuelle
(Maqueda et al., 2015). La FIGURE E.1 montre des exemples d’applications spécifiques dans
lesquelles la reconnaissance des actions joue un rôle clé.

Bien que des progrès importants aient été réalisés au cours de ces deux dernières dé-
cennies, le développement d’un système de reconnaissance des actions rapide et précis
est une tâche particulièrement difficile à cause d’un certain nombre de contraintes liées
à l’acquisition des vidéos comme les conditions d’éclairage, la position, l’orientation et le
champ de vue de la caméra (Poppe, 2010), ainsi que par les contraintes liées à la variabilité
de la réalisation des actions, notamment leur vitesse d’exécution.

Les approches traditionnelles de vision par ordinateur considèrent un système de recon-
naissance des actions comme un processus hiérarchique, dans lequel les niveaux inférieurs
correspondent à la détection et à la segmentation des personnes et les niveaux supérieurs
permettent l’extraction de caractéritiques qui vont être utilisées pour reconnaître les actions
(voir la FIGURE E.2). Bien que les méthodes traditionnelles montrent leur efficacité dans
de nombreux cas, elles restent limitées car elles sont fortement dépendantes des données
et nécessitent beaucoup de descripteurs spatio-temporels complexes. Par conséquent, l’un
des principaux défis de la reconnaissance des actions humaines dans les vidéos est de trou-
ver une représentation robuste et assez discriminante pour que les modèles d’apprentissage
soient capables de reconnaître de manière fiable plusieurs actions différentes.

Outre les difficultés mentionnées précédemment, les chercheurs et les ingénieurs dans ce
domaine sont également confrontés à de nouveaux défis. Par exemple, la complexité dans
les bases de données à grande échelle pose un nouveau problème: la reconnaissance des « ac-
tions et comportements complexes dans les vidéos ». De plus, comment construire des « systèmes
de reconnaissance des actions humaines en temps réel » est également un problème important,
en particulier dans le cas où ces systèmes sont construits sur des modèles chronophages tels
que l’apprentissage de réseaux de neurones profonds.

Dans cette thèse, nous abordons le problème de la reconnaissance des actions humaines
dans des vidéos RGB-D monoculaires. Nous exploitons l’apprentissage automatique afin
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(a) (b) (c)

(d) (e) (f)

FIGURE E.1: Quelques applications importantes sur la reconnaissance d’actions humaines
par vidéo : (a) reconnaissance et suivi d’actions humaines dans les systèmes de transport
intelligents (Ryoo and Aggarwal, 2008); (b) détection de vol (Ryoo and Aggarwal, 2007);
(c) service de surveillance à distance de personnes âgées avec détection de chute (Zouba et
al., 2009); (d) détection de piétons devant des véhicules autonomes (Kooij, Schneider, and
Gavrila, 2014); (e) reconnaissance d’actions avec des capteurs de profondeur pour l’industrie
du jeu (Zhang, 2012); (f) localisation et analyse d’actions sportives (Tian, Rahul, and Shah,
2013).

de reconnaître les actions humaines à partir de séquences de squelettes et en utilisant des
réseaux de neurones convolutifs (CNNs). L’objectif dans le cadre de ce travail est de pro-
poser de nouvelles représentations du mouvement à partir des données RGB-D et des mod-
èles d’apprentissage profonds performants qui permettent la reconnaissance des actions hu-
maines précisément et rapidement.

Les objectifs suivants sont principalement visés par cette thèse:

• Identifier l’état actuel de la recherche, les défis, les avantages et les inconvénients des
approches basées sur l’apprentissage profond pour la reconnaissance des actions humaines
dans les vidéos, en décrivant les architectures profondes les plus couramment utilisées pour
l’apprentissage des caractéristiques du mouvement humain.

• Étudier et proposer de nouvelles représentations du mouvement 3D et des architec-
tures d’apprentissage profond pour la reconnaissance des actions humaines à partir d’un
capteur RGB-D. L’approche proposée devrait être capable de reconnaître des actions hu-
maines à partir de vidéos réalistes en combinant précision et rapidité.

•Collecter et introduire une nouvelle base de données RGB-D dans les transports publics
afin d’évaluer les approches proposées dans des conditions réelles.

Les principales contributions de ces travaux de thèse peuvent être résumées comme suit.
Tout d’abord, nous introduisons le problème de la reconnaissance des actions humaines dans
des vidéos au travers d’une étude approfondie de plusieurs méthodes de reconnaissance des
actions humaines basées sur l’apprentissage profond. À l’aide d’environ 250 publications,
nous identifions l’état actuel et les futurs défis concernant ce sujet (chapitre 3). Ensuite, nous
présentons de nouvelles représentations du mouvement 3D pour la reconnaissance des ac-
tions à partir de séquences de squelettes fournies par des capteurs de profondeur permettant
d’utiliser des réseaux de neurones convolutifs (CNNs). Les représentations proposées, que
nous appelons SPMF et Enhanced-SPMF, sont capables de capturer la dynamique spatio-
temporelle des mouvements du squelette en les transformant en une structure 2D sous la
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FIGURE E.2: Un système typique de reconnaissance des actions humaines basées sur la vi-
sion par ordinateur. Les régions d’intérêts (ROIs) correspondant aux mouvements humains
sont identifiées. Leurs caractéristiques ou descripteurs spatio-temporels, par exemple SIFT
(Lowe, 2004), HOG/HOF (Dalal and Triggs, 2005; Laptev et al., 2008) ou HOG-3D (Klaser,
Marszałek, and Schmid, 2008) sont ensuite calculés et donnés à un classificateur chargé de
reconnaître les actions.

forme d’une image RGB. Cette représentation est bien adaptée à l’apprentissage des réseaux
CNNs. La méthode proposée apprend directement la relation entre les séquences du squelette
et l’action exécutée via SPMF ou Enhanced-SPMF et montre une amélioration significative
des performances par rapport aux approches existantes à l’aide de quatre bases de don-
nées de référence très difficiles. L’évaluation de l’efficacité des phases d’apprentissage et
d’inférence montre en particulier que la méthode proposée permet d’atteindre un niveau de
performance élevé tout en exigeant un temps de calcul réduit. Par ailleurs, nous présentons
également CEMEST, une nouvelle base de données RGB-D décrivant le comportement de
passagers dans les transports en commun. Elle contient 203 vidéos de vidéosurveillance
présentant des événements réalistes normaux et anormaux dans une station de métro à
Toulouse en France. Nous obtenons des résultats prometteurs dans les conditions réelles
de ces bases de données grâce aux techniques d’augmentation des données et de transfert
d’apprentissage. Cela permet d’envisager le développement d’applications réelles basées
sur l’apprentissage profond pour améliorer la surveillance et la sécurité des transports publics
(chapitre 4).

Enfin, nous proposons une méthode d’apprentissage profond unifiée pour l’estimation
de poses humaines 3D et la reconnaissance des actions à partir de ces poses. Ce système
utilise un détecteur de squelette 2D appelé OpenPose (Cao et al., 2017) pour produire des
poses humaines en 2D à partir d’images RGB. Ensuite, il intègre un réseau de neurones
profond afin d’apprendre la relation 2D vers 3D entre des poses en 2D et des poses en 3D.
Les squelettes 3D obtenus sont ensuite exploités pour la tâche de reconnaissance des actions
(chapitre 5). Nous montrons que la méthode d’apprentissage profond proposée est capable
de résoudre ces deux tâches (l’estimation des poses 3D et la reconnaissance des actions) de
manière efficace.

La thèse est structurée de la manière suivante. Le chapitre 2 est une introduction générale
à l’apprentissage profond. Nous présentons des connaissances de base sur les algorithmes
d’apprentissage automatique et d’apprentissage profond, ainsi que les modèles d’appren-
tissage profond inportants. Le chapitre 3 propose une étude complète sur les techniques
d’apprentissage profond appliquées à la reconnaissance des actions humaines à partir de
vidéos RGB-D. Une description détaillée des approches proposées pour la reconnaissance
des actions utilisant des séquences de squelettes fournies par les capteurs de profondeur est
faite au chapitre 4. Le chapitre 5 décrit notre nouvelle approche basée sur d’apprentissage
profond pour la reconstruction de squelettes en 3D et la reconnaissance des actions à partir
de caméras RGB. Enfin, dans le chapitre 6, nous résumons et analysons les principaux ré-
sultats du travail réalisé. Nous soulignons ensuite les limites de nos approches et achevons
cette thèse en fournissant des orientations prometteuses pour les travaux futurs.
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Chapitre 2

Introduction à l’apprentissage profond

L’apprentissage profond est une classe de techniques d’apprentissage automatique. Cette
technique est devenue une avancée majeure dans le domaine de la vision par ordinateur et
de l’intelligence artificielle après qu’AlexNet (Krizhevsky, Sutskever, and Hinton, 2012a) a
réalisé une performance record sur la base de données ImageNet (Rahmani and Mian, 2016).
De manière générale, les méthodes d’apprentissage profond sont des méthodes d’apprentissage
automatique utilisées pour modéliser des abstractions de haut niveau sur les données à
l’aide de réseaux de neurones artificiels, composés de multiples transformations non linéaires.
La FIGURE E.3 illustre un réseau multicouche et le processus d’apprentissage des représen-
tations de haut niveau avec des images comme données d’entrée. Plusieurs architectures

(a) (b)

FIGURE E.3: (a) Illustration d’un réseau de réseau multicouche (LeCun, Bengio, and Hin-
ton, 2015) et de son processus d’entraînement. Ce modèle permet de déterminer automa-
tiquement des représentations nécessaires aux tâches de prédiction. La première couche
appelée « couche visible » qui contient des données sous leur forme brute. À partir de la
couche visible, une série de couches cachées est construite en extrayant des entités de plus
en plus abstraites à partir des niveaux inférieurs. La couche supérieure contient des infor-
mations utiles pour prédire le contenu des données d’entrée. (b) Un exemple de modèle
d’apprentissage profond pour une tâche de la classification (Zeiler and Fergus, 2014; Good-
fellow, Bengio, and Courville, 2016). Étant données certaines images, la première couche
est constituée d’un tableau de valeurs des pixels. La première couche cachée représente la
présence de bords. Ensuite, la deuxième couche cachée identifie les coins et les contours
à partir des bords fournis par la première couche. En reliant les coins et les contours, la
troisième couche représente des parries d’objets.

d’apprentissage profond ont été proposées au fil des ans (voir TABLE E.1). Il a été montré
que certains d’entre eux atteignent des performances de pointe dans de nombreuses tâches
de reconnaissance visuelle.

Dans ce chapitre, nous décrivons les architectures d’apprentissage profond les plus im-
portantes pour la reconnaissance des actions humaines, y compris les réseaux de neurones
convolutifs (CNNs) (Fukushima, 1980; Rumelhart, Hinton, and Williams, 1986; LeCun et
al., 1989a; Krizhevsky, Sutskever, and Hinton, 2012a), les réseaux de neurones récurrents
à mémoire court-terme persistante (RNN-LSTMs) Hochreiter and Schmidhuber, 1997), les
réseaux de croyances profonds (DBNs) (Hinton, Osindero, and Teh, 2006), les auto-encodeurs
débruiteurs empilés (SDA) (Vincent et al., 2008), et les réseaux antagonistes génératifs (GANs)
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). Pour chaque classe d’algorithme, ce chapitre présente leurs concepts de base au travers de
leur idée clé et de leur modèle mathématique.

TABLE E.1: Quelques architectures d’apprentissage profond populaires pour les tâches de
reconnaissance visuelle.

Architecture Article original
CNNs Fukushima, 1980;

Rumelhart, Hinton, and Williams, 1986;
LeCun et al., 1989a;
Krizhevsky, Sutskever, and Hinton, 2012a;
Szegedy et al., 2015a;
Simonyan and Zisserman, 2014b;
Kaiming et al., 2016.

RNN-LSTMs Hochreiter and Schmidhuber, 1997.

DBNs Hinton, Osindero, and Teh, 2006.

DBMs Salakhutdinov and Hinton, 2009.

Sparse Coding Olshausen and Field, 1996;
Lee et al., 2006.

SDAs Vincent et al., 2008.

GANs Goodfellow et al., 2014.
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Chapitre 3

L’apprentissage profond pour la reconnais-
sance des actions humaines : état de l’art

La reconnaissance des actions humaines à partir de vidéos RGB-D est devenue un sujet très
populaire dans le domaine de la vision par ordinateur. La capacité à détecter et à prédire cor-
rectement des actions dans des vidéos inconnues permet de construire de nombreuses ap-
plications importantes dans des domaines tels que la surveillance intelligente, l’interaction
homme-machine et la robotique. Au cours des dernières années, les approches basées sur
l’apprentissage profond ont montré des performances impressionnantes et un grand poten-
tiel dans l’analyse et la reconnaissance des actions humaines dans des vidéos. De nom-
breuses architectures profondes différentes ont été proposées pour la reconnaissance des
actions et ont permis de faire progresser l’état de l’art dans ce domaine. Ce chapitre décrit
l’état de l’art de la reconnaissance des actions humaines à partir de séquences vidéo RGB-D
en utilisant l’apprentissage profond. Plus précisément, nous décrivons les architectures pro-
fondes les plus couramment utilisées pour apprendre des caractéristiques du mouvement
humain et nous montrons comment elles pourraient être appliquées pour relever les défis
de la reconnaissance des actions et identifier leurs avantages et leurs limites. En particulier,
grâce à des analyses quantitatives des résultats obtenus sur trois grandes bases de données
de référence, HMDB-51 (Kuehne et al., 2011), UCF-101 (Soomro, Zamir, and Shah, 2012) et
NTU-RGB+D (Shahroudy et al., 2016), nous identifions les architectures profondes les plus
performantes (voir les FIGURES E.4 and E.5) qui ont été appliquées avec succès pour la re-
connaissance des actions, puis nous fournissons les tendances actuelles et les problèmes qui
restent ouverts pour les travaux futurs. De nombreuses bases de données publiques pour la
reconnaissance des actions dans des vidéos sont également décrites.

La reconnaissance des actions humaines a rapidement progressé, passant de la recon-
naissance des actions dans un environnement simple, contrôlé, avec des bases de données
réduites, à la reconnaissance des actions dans des vidéos réalistes à très grande échelle.
Sur ce thème, les algorithmes d’apprentissage profond ont joué un rôle important. Dans ce
chapitre, nous réalisons une analyse détaillée des travaux existants sur la reconnaissance des
actions humaines à partir des vidéos RGB-D utilisant l’apprentissage profond. Cette étude
a permis de confirmer que les modèles CNNs sont les plus utilisés pour l’apprentissage
des caractéristiques spatio-temporelles du mouvement humain dans les vidéos. Les idées
clés qui sous-tendent les CNNs leur permettent de travailler directement à partir des im-
ages et d’obtenir des caractéristiques de haut niveau en composant des structures de niveau
inférieur. En plus de fonctionner comme une solution de bout en bout, les CNNs ont égale-
ment été utilisés comme des extracteurs de caractéristiques et constituent l’un des éléments
d’un système plus grand, notamment avec les réseaux RNN-LSTMs. Bien que les CNNs ob-
tiennent d’excellentes performances dans plusieurs tâches de reconnaissance des actions, ils
nécessitent d’utiliser une immense base de données d’apprentissage. De plus, l’apprentissage
d’une architecture CNNs très profonde nécessite beaucoup de calculs. Par conséquent, ap-
pliquer des CNNs très profonds à des tâches de reconnaissance d’action en temps réel reste
un grand défi.

Les réseaux de neurones récurrents à mémoire court-terme persistante (RNN-LSTMs)
ont été conçus pour traiter les séries chronologiques. Ils ont été utilisés avec succès dans
la modélisation des informations de contexte à long terme des séquences de mouvement,
en particulier avec des données sous forme de squelettes comme dans les travaux de Du,
Wang, and Wang, 2015, Song et al., 2017, Zhu et al., 2016b, ou Liu et al., 2016b. Mais la plu-
part des modèles basés sur les RNN-LSTMs ne peuvent pas fonctionner directement sur des
données brutes. Par exemple, les données du squelette doivent être prétraitées avant d’être
introduites dans des RNN-LSTMs. La combinaison de CNNs et de LSTMs est un excellent
exemple de la façon dont nous pouvons construire des modèles d’apprentissage profond
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FIGURE E.4: Comparaison de la précision (%) de différentes approches basées sur des al-
gorithmes d’apprentissage profond sur les bases de données HMDB-51 (Kuehne et al., 2011)
et UCF-101 (Soomro, Zamir, and Shah, 2012).

plus puissants en tirant parti des avantages de différentes architectures. Dans ce cas, les
CNNs ont été utilisés pour extraire des caractéristiques de mouvement de haut niveau à
partir des vidéos, tandis que les LSTMs ont été exploités pour l’apprentissage et la prédic-
tion de séquences.

Les réseaux de croyances profonds (DBNs – Hinton, Osindero, and Teh, 2006) et les auto-
encodeurs (SDAs – Vincent et al., 2008) sont également des choix prometteurs pour les tâches
de reconnaissance des actions humaines. L’apprentissage des réseaux DBNs peut être effec-
tué de manière semi-supervisée, avec moins de données étiquetées. Une des limitations
des DBNs est qu’ils requièrent des descripteurs prédéfinis (« handcrafted features ») (Fog-
gia et al., 2014) ou la conversion des données d’entrée en une forme appropriée (Ali and
Wang, 2014). Par ailleurs, les SDAs peuvent apprendre les caractéristiques de mouvement
de manière non supervisée et sont capables de générer des caractéristiques robustes. Cepen-
dant, ils ont plusieurs inconvénients liés à leur processus d’optimisation. En outre, les ap-
proches de reconnaissance des actions basées sur les réseaux antagonistes génératifs (GANs
– Goodfellow et al., 2014) récemment introduits ont également montré de grandes possibil-
ités d’apprentissage et de reconnaissance des actions humaines de manière semi-supervisée,
bien qu’ils soient difficiles à optimiser.

Dans le futur, les algorithmes d’apprentissage profond continueront d’attirer beaucoup
d’attention pour la reconnaissance des actions humaines. Quelques directions de recherche
potentielles incluront des modèles d’apprentissage non-supervisés, des réseaux de neurones
plus profonds, la combinaison de différentes architectures (par exemple CNNs avec RNN-
LSTMs). Par ailleurs, le transfert d’apprentissage et des nouvelles représentations du mou-
vement 3D pour la reconnaissance des actions sont également très prometteurs.
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FIGURE E.5: Comparaison de la précision (%) de différentes approches basées sur
l’apprentissage profond sur la base de données NTU-RGB+D (Shahroudy et al., 2016). Fig-
ure plus lisible en couleur.
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Chapitre 4

Méthodes proposées à base d’apprentissage
profond pour la reconnaissance des actions
humaines 3D à partir de squelettes fournis
par des capteurs RGB-D

Les capteurs de profondeur peuvent fournir des informations détaillées sur la structure 3D
des mouvements humains à l’aide d’algorithmes d’estimation du squelette en temps réel.
Cette source de données est une représentation de haut niveau permettant de décrire des
actions humaines de manière précise, efficace et adaptée au problème de l’analyse et de la
reconnaissance des actions dans les vidéos. Cependant, concevoir des représentations de
mouvement pour la tâche de reconnaissance des actions à partir de séquences de squelettes
reste une tâche compliquée. Cette représentation doit être robuste au bruit, invariante aux
changements de point de vue de la caméra et donner de bonnes performances de reconnais-
sance. Les deux principaux défis de cette tâche sont de représenter efficacement les motifs
spatio-temporels des mouvements du squelette et de bien apprendre leurs caractéristiques
discriminantes pour la tâche de classification. Dans ce chapitre, nous proposons de nou-
velles représentations basées sur le squelette pour la reconnaissance des actions dans les
vidéos en utilisant des réseaux de neurones convolutifs profonds (D-CNNs). Deux ques-
tions clés sont abordées : tout d’abord, comment construire une représentation robuste qui
décrit facilement les évolutions spatio-temporelles des mouvements à partir de séquences
de squelettes ? Ensuite, comment concevoir des réseaux D-CNNs capables d’apprendre de
manière efficace les caractéristiques discriminantes à partir de la nouvelle représentation
proposée ? Pour répondre à ces questions, nous proposons de coder les coordonnées 3D
des articulations du corps humain représentées dans les séquences de squelettes par une
structure spatio-temporelle représentée par une image couleur. Ces images sont capables de
représenter les évolutions spatio-temporelles des squelettes et peuvent être apprises efficace-
ment par les D-CNNs. Nous proposons ensuite une architecture d’apprentissage profond
basée sur ResNets (Kaiming et al., 2016) pour apprendre les caractéristiques des représen-
tations obtenues et les classer en actions (voir FIGURE E.6). Les résultats expérimentaux
sur trois bases de données répresentant une grande diversité d’actions humaines, MSR Ac-
tion3D (Wanqing, Zhengyou, and Zicheng, 2010), KARD (Gaglio, Re, and Morana, 2014) et
NTU-RGB+D (Shahroudy et al., 2016), montrent que notre méthode permet d’atteindre des
performances supérieures à celles de l’état de l’art.

Par la suite, nous proposons deux nouvelles représentations 3D basées sur le squelette,
appelées SPMF (Skeleton Pose-Motion Feature) et Enhanced-SPMF. Les SPMF et Enhanced-
SPMF sont des représentations compactes sous forme d’images construites à partir des po-
sitions des squelettes et de leurs mouvements. Enhanced-SPMF (voir FIGURE E.7) est une
extension de SPMF dans laquelle un filtre de lissage et un algorithme d’égalisation d’histo-
gramme adaptative (Adaptive Histogram Equalization – Pizer et al., 1987) ont été appliqués
pour réduire l’effet du bruit sur les squelettes et mettre en valeur les motifs locaux de la
représentation afin de la rendre plus discriminante. Pour les tâches d’apprentissage et de
classification, nous exploitons des réseaux D-CNNs de l’état de l’art, tels que Inception-
ResNet-v2 (Szegedy et al., 2017), DenseNet (Huang et al., 2017) et Effective Neural Archi-
tecture Search (ENAS - Pham et al., 2018a), afin d’apprendre directement la relation di-
recte entre des séquences de squelettes en entrée et les action correspondantes en sortie
via les représentations proposées. Notre méthode est évaluée sur quatre bases de données
de référence complexes, comprenant des actions individuelles dans la base MSR Action3D
(Wanqing, Zhengyou, and Zicheng, 2010), KARD (Gaglio, Re, and Morana, 2014), des inter-
actions dans la base SBU Kinect Interaction (Yun et al., 2012a)) et des données multivues à
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grande échelle dans la base NTU-RGB+D (Shahroudy et al., 2016). Les résultats expérimen-
taux montrent que l’approche proposée est plus performante que celles de l’état de lart quel
que soit le type d’action (actions individuelles, interactions, etc.).

FIGURE E.6: Vue d’ensemble schématique de notre méthode. Chaque séquence de
squelettes est codée sous la forme d’une image couleur via une représentation appelée SPMF.
Chaque SPMF est construit à partir de vecteurs de positions (PFs) et vecteurs de mouvement
(MFs). Ils sont ensuite placés en entrée d’un D-CNN, conçu sur la base de la combinaison
de ResNet (Kaiming et al., 2016) et Inception (Szegedy et al., 2016) pour apprendre les carac-
téristiques discriminantes des SPMF et pouvoir effectuer la classification des actions.

FIGURE E.7: Vue d’ensemble de la représentation proposée Enhanced-SPMF. Chaque
séquence de squelettes est transformée en une image couleur RGB qui est une carte de mou-
vement appelée SPMF. Une technique d’ajustement de contraste (Pizer et al., 1987) est en-
suite utilisée pour mettre en évidence les éléments présents dans la carte de mouvement et
former Enhanced-SPMF, qui sera appris et classé par un réseau de neurones profond. Avant
de calculer la répresentation SPMF, un filtre de lissage est appliqué pour réduire l’effet du
bruit sur les positions des points des squelettes.
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Chapitre 5

Un système d’apprentissage profond unifié
pour l’estimation conjointe de la pose 3D
et la reconnaissance des actions humaines
à partir de vidéos couleur monoculaires

Ce chapitre représente un travail supplémentaire qui n’était pas initialement prévu dans le
programme de la thèse. Les capteurs RGB-D conviennent parfaitement dans un contexte
d’application bien défini : en intérieur, en milieu confiné comme dans les autobus et avec
une portée de détection située entre 50 cm et environ 5m. Lors de la prise de mesure dans la
station de métro à Toulouse, nous avons atteint les limites d’utilisation des capteurs RGB-D.
Nous avons alors pensé qu’il pourrait être intéressant, en guise de travail supplémentaire,
d’exploiter des capteurs RGB pour extraire des squelettes 3D comme ceux issus des capteurs
RGB-D. Notre objectif dans ce chapitre est donc de proposer une approche de reconnais-
sance des actions humaines basée sur des squelettes 3D obtenus à partir de données vidéo
RGB. Plus précisément, nous présentons un système multitâche basé sur des algorithmes
d’apprentissage profond pour l’estimation conjointe de poses humaines en 3D et la recon-
naissance des actions à partir de séquences vidéo RGB. La méthode est divisée en deux par-
ties. Tout d’abord, nous utilisons le détecteur de pose humaine 2D existant OpenPose (Cao et
al., 2017) pour déterminer l’emplacement précis dans chaque image des points clés du corps.
Nous avons ensuite conçu un réseau de neurones à deux flux pour produire les positions 3D
des points clés 2D. Ensuite, nous avons utilisé l’algorithme ENAS (Efficient Neural Archi-
tecture Search – Pham et al., 2018a) pour trouver une architecture de réseau optimale pour
modéliser l’évolution spatio-temporelle des poses 3D estimées via une représentation inter-
médiaire sous la forme d’une image RGB et effectuer la tâche de reconnaissance des actions.
Les évaluations sur les bases de données Human3.6M (Ionescu et al., 2014), MSR Action3D
(Li, Zhang, and Liu, 2010) et SBU Kinect Interaction (Yun et al., 2012a) vérifient l’efficacité
de la méthode proposée pour le passage 2D à 3D et pour la reconnaissance d’actions. Les
FIGURES E.8, E.9 et E.10 fournissent des illustrations du fonctionnement de notre méthode.

FIGURE E.8: Vue d’ensemble de la méthode proposée. Avant le niveau de l’estimation,
nous avons d’abord exécuté OpenPose (Cao et al., 2017) – un détecteur de pose 2D multi-
personnes pour générer des points-clés 2D du corps humain en temps réel. Un réseau de
neurones profond est ensuite utilisé pour produire des poses 3D à partir des détections 2D.
Au niveau de la reconnaissance d’actions, les poses estimées en 3D sont codées dans une
représentation compacte à base d’image et finalement introduites dans un réseau de neu-
rones convolutif profond pour la tâche de classification supervisée, qui est automatiquement
recherchée par l’algorithme ENAS (Pham et al., 2018a).
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FIGURE E.9: Schéma du réseau à deux flux proposé pour l’entraînement de notre estima-
teur de pose 3D à partir des vidéos RGB.

FIGURE E.10: Trois visualisations de la sortie 3D de l’étape d’estimation sur la base de
données Human3.6M (Ionescu et al., 2014). Dans chaque exemple, on trouvera de gauche à
droite, la pose 2D, la vérité terrain 3D et notre prédiction 3D, respectivement.
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Chapitre 6

Conclusions et perspectives

L’objectif principal dans cette thèse a été de proposer, développer et valider un système
basé sur l’apprentissage profond pour reconnaître les actions humaines dans des séquences
vidéo monoculaires RGB-D. Pour résoudre ce problème, nous avons d’abord analysé les al-
gorithmes d’apprentissage profond les plus importants, appliqués à la reconnaissance des
actions humaines dans les vidéos (chapitre 3). Nous avons constaté que les approches basées
sur les réseaux de neurones convolutifs profonds (D-CNNs) étaient parmi les modèles les
plus performants pour cette tâche. Nous avons ensuite proposé une nouvelle approche basée
sur les D-CNNs pour la reconnaissance des actions humaines à partir de squelettes fournis
par des caméras de profondeur (chapitre 4). Deux questions clés ont été étudiées et traitées.
Tout d’abord, comment représenter efficacement les séquences de squelettes afin d’exploiter
pleinement la capacité d’apprentissage des représentations de haut niveau des réseaux D-
CNNs ? Ensuite, comment concevoir une architecture de D-CNN capable d’apprendre des
caractéristiques discriminantes à partir de la représentation proposée afin de reconnaître les
actions ? En conséquence, nous avons introduit deux nouvelles représentations du mouve-
ment 3D appelées SPMF et Enhanced-SPMF, qui représentent les poses et les mouvements
des squelettes sous la forme d’images couleur. Les résultats expérimentaux obtenus sur qua-
tre bases de données publiques, MSR Action3D (Wanqing, Zhengyou, and Zicheng, 2010),
KARD (Gaglio, Re, and Morana, 2014), SBU Kinect Interaction (Yun et al., 2012a) et NTU-
RGB+D (Shahroudy et al., 2016), ont montré l’efficacité des représentations proposées ainsi
que notre système d’apprentissage profond proposé.

Notre étude a également montré que la représentation Enhanced-SPMF permet de mieux
apprendre les caractéristiques spatio-temporelles du mouvement que la représentation SPMF.
Plus précisément, nous avons réalisé une étude d’ablation en entraînant et en évaluant un
réseau DenseNet (Huang et al., 2017) en utilisant SPMF et Enhanced-SPMF. La base utilisée
était SBU Kinect Interaction (Yun et al., 2012a). Les mêmes valeurs des hyperparamètres et la
même stratégie d’apprentissage ont été utilisées dans les deux cas (chapitre 4). Les résultats
expérimentaux indiquent que l’apprentissage sur Enhanced-SPMF a conduit à de meilleures
performances de reconnaissance. Cela montre que l’utilisation de l’algorithme AHE (Pizer
et al., 1987) et du filtre de lissage Savitzky-Golay (Savitzky and Golay, 1964) contribue à
améliorer la précision. Pour les tâches d’apprentissage et de classification, nous avons conçu
différentes architectures D-CNN basées sur ResNet (Kaiming et al., 2016), Inception-ResNet-
v2 (Szegedy et al., 2017), DenseNet (Huang et al., 2017) et Effective Neural Architecture
Search (ENAS - Pham et al., 2018a) pour extraire des caractéristiques robustes à partir des
représentations sous forme d’images couleur et effectuer le classement. Nous constatons que
les comportements d’apprentissage des réseaux de neurones profonds dépendent fortement
de la taille et de la distribution des données d’entrée.

Dans cette thèse, nous avons également mené des recherches sur le problème de l’esti-
mation de poses humaines en 3D à partir de séquences vidéo RGB monoculaires et utilisé
les poses 3D estimées pour la reconnaissance des actions. Les expérimentations sur les bases
de données Human3.6M (Ionescu et al., 2014), MSR Action3D (Li, Zhang, and Liu, 2010) et
SBU Kinect Interaction (Yun et al., 2012a) ont montré l’efficacité de la méthode proposée sur
les deux tâches. De plus, nous avons collecté et présenté la nouvelle base de données RGB-D
CEMEST décrivant le comportement de passagers dans les transports publics. Cette base de
données contient un total de 203 vidéos de surveillance réelles, présentant des événements
réalistes « normaux » et « anormaux ». Nous avons rendue publique1 cette base de don-
nées, sous forme de squelettes, à des fins de recherche et développement dans ce domaine.

1La base de données CEMEST et sa description sont disponibles à l’adresse : https://sites.
google.com/site/hhpham172/image-processing-and-computer-vision/tisseo-cerema-dataset.

https://sites.google.com/site/hhpham172/image-processing-and-computer-vision/tisseo-cerema-dataset
https://sites.google.com/site/hhpham172/image-processing-and-computer-vision/tisseo-cerema-dataset
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Nous avons obtenu des résultats prometteurs dans les conditions réelles de CEMEST avec le
réseau DenseNet (Huang et al., 2017) et la représentation Enhanced-SPMF, en exploitant des
techniques d’augmentation de données et de transfert d’apprentissage. Nous continuons
actuellement de mener de nouvelles expérimentations de l’estimation de la pose 3D à partir
de vidéos RGB sur CEMEST. Les résultats obtenus seront rapportés dans notre prochaine
publication.

Bien que l’efficacité des différentes méthodes que l’on a proposées ait été montrée en
termes de précision, certaines limites subsistent. Cela nécessite davantage de travaux de
recherche. Tout d’abord, le modèle proposé ne peut pas gérer les données en ligne (ou Online
Action Recognition – OAR) qui visent à détecter et à reconnaître des actions de manière con-
tinue à partir de flux non segmentés, lorsque les frontières entre les différentes actions dans
le flux sont inconnues. Notre étude s’est concentrée jusqu’à maintenant sur la reconnais-
sance des actions à partir de séquences segmentées, chaque segment correspondant à une
seule action ou à une interaction. Une approche courante de l’OAR que nous pouvons en-
visager est la technique de la « fenêtre glissante » (Kviatkovsky, Rivlin, and Shimshoni, 2014;
Kulkarni et al., 2015; Zhu et al., 2016a). Cette approche considère la cohérence temporelle
dans une fenêtre de prédiction. Cette idée peut également être appliquée pour résoudre
notre problème. Cependant, nous comprenons que les performances de ces méthodes sont
sensibles à la taille de la fenêtre et qu’une taille de fenêtre trop grande ou trop petite peut
entraîner une baisse significative des performances. Ensuite, les réseaux D-CNNs proposés
tels que ResNets (Kaiming et al., 2016) ou DenseNets (Huang et al., 2017) sont des réseaux
très profonds contenant des millions de paramètres devant être appris. Il est donc irréaliste
d’exploiter ces architectures sur des CPUs ou des plates-formes mobiles. Enfin, la méth-
ode proposée pour l’estimation de la pose 3D à partir de séquences vidéo RGB dépend
naturellement de la qualité de la sortie des détecteurs 2D. Par conséquent, une limitation
est qu’il n’est pas possible de récupérer les poses 3D à partir d’une sortie 2D de mauvaise
qualité. Ce problème pourrait être résolu en fournissant davantage d’informations visuelles
au réseau, comme les silhouettes couleur des personnes, afin d’accroître les performances.
Enfin, nous avons collecté et proposé le jeu de données CEMEST. Nous somme conscients
du fait que CEMEST est une petite base de données et que l’entraînement d’algorithmes
d’apprentissage supervisés tels que les réseaux D-CNNs pourrait facilement conduire à un
surajustement.

De nombreuses directions de recherche potentielles devraient être considérées pour
élargir l’approche actuelle. Nous décrivons ici certaines des idées les plus prometteuses.
Par exemple, les réseaux de neurones récurrents à mémoire court-terme persistante (RNN-
LSTMs – Hochreiter and Schmidhuber, 1997) sont largement utilisés pour la modélisation et
la prévision de séries chronologiques. Ce type de réseau peut être utilisé pour modéliser les
caractéristiques spatio-temporelles contenues dans les représentations SPMF et Enhanced-
SPMF proposées. Les réseaux convolutifs temporels (TCNs – Bai, Kolter, and Koltun, 2018)
ont montré que les architectures de convolution peuvent dépasser les réseaux récurrents sur
des tâches telles que la synthèse audio et la traduction automatique. Les auteurs ont montré
que, pour des problèmes de modélisation de séquences, une architecture convolutive simple
est meilleure que les réseaux récurrents tels que les RNN-LSTMs, à travers un large éventail
de tâches et de bases de données, tout en montrant une mémoire à long terme. Les représen-
tations de mouvement 3D proposées (SPMF et Enhanced-SPMF) sont construites à partir
de deux fonctions d’action : les postures statiques et les mouvements temporels. Les deux
caractéristiques ont été combinées dans une image couleur unique et mises en entrée des
D-CNNs pour un apprentissage de la représentation. Une autre solution consiste à coder
chaque type de caractéristique dans une image et à créer un modèle de réseau neuronal pro-
fond à deux flux qui accepte les deux images en tant qu’entrées. Les dernières couches des
deux flux seront fusionnées ultérieurement pour améliorer les performances. Par ailleurs, les
réseaux temporels reposant sur le mécanisme d’attention (« Attention Temporal Network » ou
ATN – Zang et al., 2018; Li et al., 2019) peuvent encore améliorer la performance de la recon-
naissance des actions humaines dans les vidéos. Au lieu de traiter toutes les images vidéo
échantillonnées sur un pied d’égalité, un réseau ATN dispose d’un mécanisme d’attention,
ce qui permet de se concentrer automatiquement davantage sur les segments sémantique-
ment critiques. Cette idée peut également être appliquée aux squelettes (Xie et al., 2018;
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Si et al., 2019). Par exemple, Si et al., 2019 ont proposé une architecture profonde appelée
AGC-LSTM qui dispose d’un mécanisme d’attention. L’AGC-LSTM est capable d’extraire
des caractéristiques discriminantes dans la dynamique spatio-temporelle et d’explorer la re-
lation de cooccurrence entre le domaine spatial et le domaine temporel. Cela permet à cette
architecture d’accroître la capacité d’apprendre la représentation sémantique de haut niveau
en sélectionnant des informations spatiales discriminantes à partir de points caractéristiques
d’un squelette.
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motion”. In: ACM Transactions on Graphics (TOG). Vol. 24, pp. 1082–1089.

Hu, Jian-Fang et al. (2015a). “Jointly learning heterogeneous features for RGB-D ac-
tivity recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5344–5352.

http://dx.doi.org/10.1109/CVPR.2015.7298698
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TCSVT.2016.2628339
http://dx.doi.org/10.1109/TCSVT.2016.2628339


138 BIBLIOGRAPHY

Hu, Jianfang et al. (2015b). “Jointly learning heterogeneous features for RGB-D ac-
tivity recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5344–5352.

Huang, Fu Jie, Y-Lan Boureau, and Yann LeCun (2007). “Unsupervised learning of
invariant feature hierarchies with applications to object recognition”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8.

Huang, G. et al. (2017). “Densely connected convolutional networks”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. DOI:
10.1109/CVPR.2017.243.

Hubel, David H and Torsten N Wiesel (1962). “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex”. In: The Journal of Physiology
160, pp. 106–154.

Huber, P. J. (1992). “Robust estimation of a location parameter”. In: Breakthroughs in
Statistics. Springer, pp. 492–518.

Hussein, Mohamed E. et al. (2013). “Human action recognition using a temporal
hierarchy of covariance descriptors on 3D joint locations”. In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence. IJCAI ’13. Bei-
jing, China: AAAI Press, pp. 2466–2472. ISBN: 978-1-57735-633-2. URL: http://
dl.acm.org/citation.cfm?id=2540128.2540483.

Ibrahim, Mostafa S. et al. (2016a). “A hierarchical deep temporal model for group ac-
tivity recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1971–1980.

Ibrahim, Mostafa S et al. (2016b). “A hierarchical deep temporal model for group ac-
tivity recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1971–1980.

Ikizler, Nazlı and Pınar Duygulu (2007). “Human action recognition using distribu-
tion of oriented rectangular patches”. In: Human Motion–Understanding, Model-
ing, Capture and Animation, pp. 271–284.

Ilya, L. and H. Frank (2016). “SGDR: Stochastic gradient descent with warm restarts”.
In: arXiv preprint arXiv:1608.03983.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International Conference
on Machine Learning (ICML), pp. 448–456.

Ionescu, C. et al. (2014). “Human3.6M: Large scale datasets and predictive methods
for 3D human sensing in natural environments”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 36.7, pp. 1325–1339.

Isola, Phillip et al. (2017). “Image-to-image translation with conditional adversarial
networks”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1125–1134.

Ivan, Laptev (2012). “Action recognition using rate-invariant analysis of skeletal
shape trajectories”. In: The INRIA Computer Vision and Machine Learning Summer
School Grenoble.

Jaeyong Sung et al. (2012). “Unstructured human activity detection from RGB-D im-
ages”. In: 2012 IEEE International Conference on Robotics and Automation, pp. 842–
849. DOI: 10.1109/ICRA.2012.6224591.

Jain, Arjun et al. (2013). “Learning human pose estimation features with convolu-
tional networks”. In: arXiv preprint arXiv:1312.7302.

Jain, Arjun et al. (2014). “Modeep: A deep learning framework using motion features
for human pose estimation”. In: Asian Conference on Computer Vision (ACCV),
pp. 302–315.

http://dx.doi.org/10.1109/CVPR.2017.243
http://dl.acm.org/citation.cfm?id=2540128.2540483
http://dl.acm.org/citation.cfm?id=2540128.2540483
http://dx.doi.org/10.1109/ICRA.2012.6224591


BIBLIOGRAPHY 139

Jhuang, Hueihan (2007). “A biologically inspired system for action recognition”.
PhD thesis. PhD Thesis - Massachusetts Institute of Technology.

Ji, Shuiwang et al. (2013). “3D convolutional neural networks for human action
recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 35, pp. 221–231.

Ji, Yanli, Guo Ye, and Hong Cheng (2014). “Interactive body part contrast mining for
human interaction recognition”. In: IEEE International Conference on Multimedia
and Expo Workshops (ICMEW), pp. 1–6.

Jiang, Y.-G. et al. (2014). THUMOS challenge: Action recognition with a large number of
classes. http://crcv.ucf.edu/THUMOS14/. Accessed: 2019-04-21.

Jin, Ke et al. (2017). “Action recognition using vague division depth motion maps”.
In: The Journal of Engineering 1.1.

Kaiming, He et al. (2016). “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778.

Kang, Soo Min and Richard P Wildes (2016). “Review of action recognition and de-
tection methods”. In: arXiv preprint arXiv:1610.06906.

Karpathy, A. et al. (2014). “Large-scale video classification with convolutional neural
networks”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1725–1732. DOI: 10.1109/CVPR.2014.223.

Karpathy, Andrej et al. (2014). “Large-scale video classification with convolutional
neural networks”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1725–1732.

Katircioglu, I. et al. (2018). “Learning latent representations of 3D human pose with
deep neural networks”. In: International Journal of Computer Vision (IJCV) 126.12,
pp. 1326–1341.

Ke, Qiuhong et al. (2017). “A new representation of skeleton sequences for 3d ac-
tion recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4570–4579.

Ke, Shian-Ru et al. (2013). “A review on video-based human activity recognition”.
In: Computers 2, pp. 88–131.

Kim, Ho-Joon, Joseph S Lee, and Hyun-Seung Yang (2007). “Human action recogni-
tion using a modified convolutional neural network”. In: International Symposium
on Neural Networks (ISNN), pp. 715–723.

Kim, Ho-Joon, Juho Lee, and Hyun-Seung Yang (2006). “A weighted FMM neural
network and its application to face detection”. In: International Conference on Neu-
ral Information Processing (ICONIP), pp. 177–186.

Kim, Tae Soo and Austin Reiter (2017). “Interpretable 3D human action analysis with
temporal convolutional networks”. In: arXiv preprint arXiv:1704.04516.

Kingma, D. and J. Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980.

Klambauer, G. et al. (2017). “Self-normalizing neural networks”. In: Advances in Neu-
ral Information Processing Systems (NIPS), pp. 971–980.

Klaser, Alexander, Marcin Marszałek, and Cordelia Schmid (2008). “A spatio-temporal
descriptor based on 3D-gradients”. In: British Machine Vision Conference (BMVC),
pp. 275–1.

Kooij, J. F. P., N. Schneider, and D. M. Gavrila (2014). “Analysis of pedestrian dynam-
ics from a vehicle perspective”. In: IEEE Intelligent Vehicles Symposium Proceedings
(IVSP), pp. 1445–1450. DOI: 10.1109/IVS.2014.6856505.

http://crcv.ucf.edu/THUMOS14/
http://dx.doi.org/10.1109/CVPR.2014.223
http://dx.doi.org/10.1109/IVS.2014.6856505


140 BIBLIOGRAPHY

Koppula, Hema Swetha, Rudhir Gupta, and Ashutosh Saxena (2013). “Learning hu-
man activities and object affordances from RGB-D videos”. In: The International
Journal of Robotics Research 32, pp. 951–970.

Koppula, Hema Swetha and Ashutosh Saxena (2013). “Learning spatio-temporal
structure from RGB-D videos for human activity detection and anticipation”. In:
International Conference on Machine Learning (ICML), pp. 792–800.

Krizhevsky, Alex (2009). “Learning multiple layers of features from tiny images”. In:
Tech Report.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012a). “ImageNet classi-
fication with deep convolutional neural networks”. In: Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 1097–1105.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012b). “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 1097–1105.

Kuehne, H. et al. (2011). “HMDB: A large video database for human motion recogni-
tion”. In: International Conference on Computer Vision (ICCV), pp. 2556–2563. DOI:
10.1109/ICCV.2011.6126543.

Kuehne, Hildegard et al. (2011). “HMDB: a large video database for human mo-
tion recognition”. In: International Conference on Computer Vision (ICCV), pp. 2556–
2563.

Kulkarni, Kaustubh et al. (2015). “Continuous action recognition based on sequence
alignment”. In: International Journal of Computer Vision 112.1, pp. 90–114.

Kviatkovsky, Igor, Ehud Rivlin, and Ilan Shimshoni (2014). “Online action recogni-
tion using covariance of shape and motion”. In: Computer Vision and Image Un-
derstanding 129, pp. 15–26.

Laptev, I. et al. (2008). “Learning realistic human actions from movies”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. DOI: 10.
1109/CVPR.2008.4587756.

Laptev, Ivan (2005). “On space-time interest points”. In: International Journal of Com-
puter Vision 64, pp. 107–123.

Laptev, Ivan et al. (2008). “Learning realistic human actions from movies”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8.

Lea, Colin et al. (2017). “Temporal convolutional networks for action segmentation
and detection”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 156–165.

Lecun, Y. et al. (1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278–2324.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Na-
ture 521, p. 436.

LeCun, Yann et al. (1989a). “Backpropagation applied to handwritten zip code recog-
nition”. In: Neural Computation 1, pp. 541–551.

LeCun, Yann et al. (1989b). “Backpropagation applied to handwritten zip code recog-
nition”. In: Neural Computation 1, pp. 541–551.

LeCun, Yann et al. (1998a). “Efficient backprop”. In: Neural networks: Tricks of the trade.
Springer, pp. 9–50.

LeCun, Yann et al. (1998b). “Effiicient backProp”. In: Neural networks: Tricks of the
trade. London, UK, UK: Springer-Verlag, pp. 9–50. ISBN: 3-540-65311-2. URL: http:
//dl.acm.org/citation.cfm?id=645754.668382.

Ledig, Christian et al. (2017). “Photo-realistic single image super-resolution using
a generative adversarial network”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4681–4690.

http://dx.doi.org/10.1109/ICCV.2011.6126543
http://dx.doi.org/10.1109/CVPR.2008.4587756
http://dx.doi.org/10.1109/CVPR.2008.4587756
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=645754.668382


BIBLIOGRAPHY 141

Lee, Honglak et al. (2006). “Efficient sparse coding algorithms”. In: Proceedings of
the 19th International Conference on Neural Information Processing Systems. NIPS’06.
Vancouver, Canada: MIT Press Cambridge, MA, USA, pp. 801–808. URL: http:
//dl.acm.org/citation.cfm?id=2976456.2976557.

Lee, Honglak et al. (2009). “Convolutional deep belief networks for scalable unsu-
pervised learning of hierarchical representations”. In: International Conference on
Machine Learning (ICML), pp. 609–616.

Lee, Inwoong et al. (2017). “Ensemble deep learning for skeleton-based action recog-
nition using temporal sliding LSTM networks”. In: 2017 IEEE International Con-
ference on Computer Vision (ICCV), pp. 1012–1020.

Li, Chuankun et al. (2017a). “Joint distance maps based action recognition with con-
volutional neural networks”. In: IEEE Signal Processing Letters 24, pp. 624–628.

Li, Chuankun et al. (2017b). “Skeleton-based action recognition using LSTM and
CNN”. In: IEEE International Conference on Multimedia & Expo Workshops (ICMEW),
pp. 585–590.

Li, Dong et al. (2019). “Unified spatio-temporal attention networks for action recog-
nition in videos”. In: IEEE Transactions on Multimedia 21.2, pp. 416–428.

Li, Qing et al. (2016a). “Action recognition by learning deep multi-granular spatio-
temporal video representation”. In: Proceedings of the 2016 ACM on International
Conference on Multimedia Retrieval (ACM), pp. 159–166.

Li, S. and A. B. Chan (2014). “3D human pose estimation from monocular images
with deep convolutional neural network”. In: Asian Conference on Computer Vision
(ACCV), pp. 332–347.

Li, Wanqing, Zhengyou Zhang, and Zicheng Liu (2010). “Action recognition based
on a bag of 3D points”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 9–14.

Li, Wenbo et al. (2015). “Category-blind human action recognition: A practical recog-
nition system”. In: IEEE International Conference on Computer Vision (ICCV), pp. 4444–
4452.

Li, Xinyu et al. (2017c). “Region-based activity recognition using conditional GAN”.
In: Proceedings of the 2017 ACM on Multimedia Conference. ACM, pp. 1059–1067.

Li, Yanghao et al. (2016b). “Online human action detection using joint classification-
regression recurrent neural networks”. In: European Conference on Computer Vision
(ECCV), pp. 203–220.

Liang, B. and L. Zheng (2013). “Three dimensional motion trail model for gesture
recognition”. In: IEEE International Conference on Computer Vision (ICCV), pp. 684–
691.

Ling, Jiaxu, Lihua Tian, and Chen Li (2016). “3D human activity recognition using
skeletal data from RGB-D sensors”. In: International Symposium on Visual Comput-
ing (ISVC), pp. 133–142.

Liu, A. A. et al. (2017a). “Benchmarking a multimodal and multiview and interactive
dataset for human action recognition”. In: IEEE Transactions on Cybernetics 47.7,
pp. 1781–1794. ISSN: 2168-2267. DOI: 10.1109/TCYB.2016.2582918.

Liu, Anan et al. (2017b). “Hierarchical clustering multi-task learning for joint human
action grouping and recognition”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 39, pp. 102–114.

Liu, Cong et al. (2015). “Learning motion and content-dependent features with con-
volutions for action recognition”. In: Multimedia Tools and Applications 75, pp. 13023–
13039.

Liu, Fang et al. (2016a). “Simple to complex transfer learning for action recognition”.
In: IEEE Transactions on Image Processing 25, pp. 949–960.

http://dl.acm.org/citation.cfm?id=2976456.2976557
http://dl.acm.org/citation.cfm?id=2976456.2976557
http://dx.doi.org/10.1109/TCYB.2016.2582918


142 BIBLIOGRAPHY

Liu, J., Jiebo Luo, and M. Shah (2009). “Recognizing realistic actions from videos “in
the wild””. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1996–2003. DOI: 10.1109/CVPR.2009.5206744.

Liu, Jun et al. (2016b). “Spatio-temporal LSTM with trust gates for 3D human action
recognition”. In: European Conference on Computer Vision (ECCV), pp. 816–833.

Liu, Jun et al. (2017c). “Global context-aware attention LSTM networks for 3d ac-
tion recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4674–4683.

Liu, Jun et al. (2018). “Skeleton-based human action recognition with global context-
aware attention LSTM networks”. In: IEEE Transactions on Image Processing 27.4,
pp. 1586–1599.

Liu, Li, Ling Shao, and Peter Rockett (2012). “Genetic programming-evolved spatio-
temporal descriptor for human action recognition”. In: British Machine Vision
Conference (BMVC), pp. 1–12.

Liu, Mengyuan, Hong Liu, and Chen Chen (2017). “Enhanced skeleton visualization
for view invariant human action recognition”. In: Pattern Recognition, pp. 346–
362.

Lowe, David G (2004). “Distinctive image features from scale-invariant keypoints”.
In: International Journal of Computer Vision (IJCV) 60.2, pp. 91–110.

Lu, Zhiwu and Yuxin Peng (2013). “Latent semantic learning with structured sparse
representation for human action recognition”. In: Pattern Recognition 46, pp. 1799–
1809.

Luo, Jiajia, Wei Wang, and Hairong Qi (2013). “Group sparsity and geometry con-
strained dictionary learning for action recognition from depth maps”. In: Inter-
national Conference on Computer Vision (ICCV), pp. 1809–1816.

Luo, Zelun et al. (2017). “Unsupervised learning of long-term motion dynamics for
videos”. In: pp. 2203–2212.

Luong, Minh-Thang, Hieu Pham, and Christopher D Manning (2015). “Effective ap-
proaches to attention-based neural machine translation”. In: arXiv preprint
arXiv:1508.04025.

Luvizon, D. C., D. Picard, and H. Tabia (2018). “2D/3D pose estimation and action
recognition using multitask deep learning”. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 5137–5146.

Lv, Fengjun and Ramakant Nevatia (2006). “Recognition and segmentation of 3D
human action using HMM and multi-class Adaboost”. In: Proceedings of the 9th
European Conference on Computer Vision - Volume Part IV. ECCV’06, pp. 359–372.

Mahasseni, Behrooz and Sinisa Todorovic (2016). “Regularizing long short term mem-
ory with 3D human-skeleton sequences for action recognition”. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 3054–3062.

Maqueda, A. I. et al. (2015). “Human-action recognition module for the new genera-
tion of augmented reality applications”. In: International Symposium on Consumer
Electronics (ISCE), pp. 262–264. DOI: 10.1109/ISCE.2015.7177833.

Marszalek, M., I. Laptev, and C. Schmid (2009). “Actions in context”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 2929–2936. DOI:
10.1109/CVPR.2009.5206557.

Martinez, J. et al. (2017). “A simple yet effective baseline for 3D human pose esti-
mation”. In: IEEE International Conference on Computer Vision (ICCV), pp. 2640–
2649.

Mehta, D. et al. (2017a). “Monocular 3D human pose estimation in the wild us-
ing improved CNN supervision”. In: International Conference on 3D Vision (3DV),
pp. 506–516.

http://dx.doi.org/10.1109/CVPR.2009.5206744
http://dx.doi.org/10.1109/ISCE.2015.7177833
http://dx.doi.org/10.1109/CVPR.2009.5206557


BIBLIOGRAPHY 143

Mehta, D. et al. (2017b). “VNect: Real-time 3D human pose estimation with a single
RGB camera”. In: ACM Transactions on Graphics (TOG) 36.4, p. 44.

Michael, Ryoo and Aggarwal Jake (2009). “Spatio-temporal relationship match: Video
structure comparison for recognition of complex human activities.” In: ICCV.
Vol. 1, p. 2.

Microsoft (2014). Kinect for Windows - Human interface guidelines v2.0. Tech. rep.
Mirza, Mehdi and Simon Osindero (2014). “Conditional generative adversarial nets”.

In: arXiv preprint arXiv:1411.1784.
Misra, Ishan, C Lawrence Zitnick, and Martial Hebert (2016). “Shuffle and learn: un-

supervised learning using temporal order verification”. In: European Conference
on Computer Vision (ECCV), pp. 527–544.

Mnih, Volodymyr, Nicolas Heess, Alex Graves, et al. (2014). “Recurrent models of
visual attention”. In: Advances in Neural Information Processing Systems, pp. 2204–
2212.

Mo, Lingfei et al. (2016). “Human physical activity recognition based on computer
vision with deep learning model”. In: IEEE International on Instrumentation and
Measurement Technology Conference Proceedings (I2MTC), pp. 1–6.

Moeslund, Thomas B and Erik Granum (2001). “A survey of computer vision-based
human motion capture”. In: Computer Vision and Image Understanding 81, pp. 231–
268.

Moeslund, Thomas B, Adrian Hilton, and Volker Krüger (2006). “A survey of ad-
vances in vision-based human motion capture and analysis”. In: Computer Vision
and Image Understanding 104, pp. 90–126.

Moez, Baccouche et al. (2012). “Spatio-temporal convolutional sparse Autoencoder
for sequence classification”. In: British Machine Vision Conference (BMVC), pp. 1–
12.

Nair, Vinod and Geoffrey E. Hinton (2009). “3D object recognition with deep belief
nets”. In: Proceedings of the 22Nd International Conference on Neural Information Pro-
cessing Systems. NIPS’09. Vancouver, Canada: Curran Associates Inc., pp. 1339–
1347. ISBN: 978-1-61567-911-9. URL: http://dl.acm.org/citation.cfm?id=
2984093.2984244.

Nair, Vinod and Geoffrey E Hinton (2010). “Rectified linear units improve restricted
boltzmann machines”. In: Proceedings of the 27th International Conference on Ma-
chine Learning (ICML), pp. 807–814.

Newell, A., K. Yang, and J. Deng (2016). “Stacked hourglass networks for human
pose estimation”. In: European Conference on Computer Vision (ECCV), pp. 483–
499.

Ng, Joe Yue-Hei et al. (2015). “Beyond short snippets: Deep networks for video clas-
sification”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4694–4702.

Nie, B. X., C. Xiong, and S. Zhu (2015). “Joint action recognition and pose estima-
tion from video”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1293–1301.

Niebles, Juan Carlos, Chih-Wei Chen, and Li Fei-Fei (2010). “Modeling temporal
structure of decomposable motion segments for activity classification”. In: Eu-
ropean Conference on Computer Vision (ECCV), pp. 392–405.

Nowlan, Steven J. and John C. Platt (1994). “A convolutional neural network hand
tracker”. In: Proceedings of the 7th International Conference on Neural Information
Processing Systems. NIPS’94. Denver, Colorado: MIT Press Cambridge, MA, USA,
pp. 901–903. URL: http://dl.acm.org/citation.cfm?id=2998687.2998799.

http://dl.acm.org/citation.cfm?id=2984093.2984244
http://dl.acm.org/citation.cfm?id=2984093.2984244
http://dl.acm.org/citation.cfm?id=2998687.2998799


144 BIBLIOGRAPHY

Ofli, F. et al. (2013). “Berkeley MHAD: A comprehensive multimodal human action
database”. In: IEEE Workshop on Applications of Computer Vision (WACV), pp. 53–
60.

Oh, S. et al. (2011). “AVSS 2011 demo session: A large-scale benchmark dataset for
event recognition in surveillance video”. In: IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS), pp. 527–528.

Ohn-Bar, Eshed and Mohan Trivedi (2013). “Joint angles similarities and HOG2 for
action recognition”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 465–470.

Olshausen, B A and D J Field (1996). “Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images”. In: Nature 381, p. 607.

Oreifej, Omar and Zicheng Liu (2013). “HON4D: Histogram of oriented 4D normals
for activity recognition from depth sequences”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 716–723.

Park, S., J. Hwang, and N. Kwak (2016). “3D human pose estimation using convo-
lutional neural networks with 2D pose information”. In: European Conference on
Computer Vision (ECCV), pp. 156–169.

Pavlakos, G. et al. (2017). “Coarse-to-fine volumetric prediction for single-image
3D human pose”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7025–7034.

Pavllo, D. et al. (2018). “3D human pose estimation in video with temporal convolu-
tions and semi-supervised training”. In: arXiv preprint arXiv:1811.11742.

Peng, Xiaojiang et al. (2016). “Bag of visual words and fusion methods for action
recognition: comprehensive study and good practice”. In: Computer Vision and
Image Understanding (CVIU) 150, pp. 109–125.

Pham, H. et al. (2018a). “Efficient neural architecture search via parameters sharing”.
In: International Conference on Machine Learning (ICML), pp. 4095–4104.

Pham, Huy-Hieu et al. (2018b). “Exploiting deep residual networks for human action
recognition from skeletal data”. In: Computer Vision and Image Understanding 170,
pp. 51–66.

Phung, Son Lam and Abdesselam Bouzerdoum (2007). “A pyramidal neural net-
work for visual pattern recognition”. In: IEEE Transactions on Neural Networks 18,
pp. 329–343.

Pickering, C. A., K. J. Burnham, and M. J. Richardson (2007). “A research study of
hand gesture recognition technologies and applications for human vehicle inter-
action”. In: The 3rd Conference on Automotive Electronics - Institution of Engineering
and Technology, pp. 1–15.

Pizer, Stephen M et al. (1987). “Adaptive histogram equalization and its variations”.
In: Computer Vision, Graphics, and Image Processing 39.3, pp. 355–368.

Popoola, O. P. and K. Wang (2012). “Video-based abnormal human behavior recog-
nition: A review”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42, pp. 865–878.

Poppe, Ronald (2010). “A survey on vision-based human action recognition”. In:
Image and Vision Computing 28.6, pp. 976–990.

Presti, Liliana Lo and Marco La Cascia (2016). “3D skeleton-based human action
classification: A survey”. In: Pattern Recognition 53, pp. 130–147.

Qin, Shuxin, Yiping Yang, and Yongshi Jiang (2013). “Gesture recognition from depth
images using motion and shape features”. In: International Symposium on Instru-
mentation and Measurement, Sensor Network and Automation (IMSNA), pp. 172–175.



BIBLIOGRAPHY 145

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised represen-
tation learning with deep convolutional generative adversarial networks”. In:
arXiv preprint arXiv:1511.06434.

Rahmani, Hossein and Mohammed Bennamoun (2017). “Learning action recogni-
tion model from depth and skeleton videos”. In: IEEE International Conference on
Computer Vision (ICCV), pp. 5832–5841.

Rahmani, Hossein and Ajmal Mian (2016). “3D action recognition from novel view-
points”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1506–1515.

Rahmani, Hossein, Ajmal Mian, and Mubarak Shah (2018). “Learning a deep model
for human action recognition from novel viewpoints”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 40, pp. 667–681.

Rahmani, Hossein et al. (2016). “Histogram of oriented principal components for
cross-view action recognition”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI) 38, pp. 2430–2443.

Raina, Rajat et al. (2007). “Self-taught learning: transfer learning from unlabeled
data”. In: International Conference on Machine Learning (ICML), pp. 759–766.

Ramakrishna, V., T. Kanade, and Y. Sheikh (2012). “Reconstructing 3D human pose
from 2D image landmarks”. In: European Conference on Computer Vision (ECCV),
pp. 573–586.

Ranasinghe, Suneth, Fadi Al Machot, and Heinrich C Mayr (2016). “A review on ap-
plications of activity recognition systems with regard to performance and evalu-
ation”. In: International Journal of Distributed Sensor Networks 12.8.

Reddy, Kishore K. and Mubarak Shah (2013). “Recognizing 50 human action cate-
gories of web videos”. In: Machine Vision and Applications 24, pp. 971–981.

Reed, Scott et al. (2016). “Generative adversarial text to image synthesis”. In: Pro-
ceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48. ICML’16. New York, NY, USA: JMLR.org, pp. 1060–1069.
URL: http://dl.acm.org/citation.cfm?id=3045390.3045503.

Rodriguez, M. D., J. Ahmed, and M. Shah (2008). “Action MACH a spatio-temporal
maximum average correlation height filter for action recognition”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8.

Rodríguez, Natalia Díaz et al. (2014). “A survey on ontologies for human behavior
recognition”. In: ACM Computing Surveys, p. 43.

Ruck, Dennis W, Steven K Rogers, and Matthew Kabrisky (1990). “Feature selection
using a multilayer perceptron”. In: Journal of Neural Network Computing 2, pp. 40–
48.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors”. In: Cognitive Modeling 323, 533––
536.

Russakovsky, Olga et al. (2015). “ImageNet large scale visual recognition challenge”.
In: International Journal of Computer Vision (IJCV) 115, pp. 211–252.

Ryoo, M. S. and J. K. Aggarwal (2007). “Hierarchical recognition of human activi-
ties interacting with objects”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–8. DOI: 10.1109/CVPR.2007.383487.

Ryoo, Michael S and Jake K Aggarwal (2008). “Observe-and-explain: A new ap-
proach for multiple hypotheses tracking of humans and objects”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8.

Sabour, Sara, Nicholas Frosst, and Geoffrey E Hinton (2017). “Dynamic routing be-
tween capsules”. In: Advances in Neural Information Processing Systems (NIPS),
pp. 3859–3869.

http://dl.acm.org/citation.cfm?id=3045390.3045503
http://dx.doi.org/10.1109/CVPR.2007.383487


146 BIBLIOGRAPHY

Salakhutdinov, Ruslan and Geoffrey E Hinton (2009). “Deep Boltzmann machines”.
In: Artificial Intelligence and Statistics Conference (AISTATS), pp. 448–455.

Sargano, Allah Bux et al. (2017). “Human action recognition using transfer learning
with deep representations”. In: Neural Networks (IJCNN), 2017 International Joint
Conference on, pp. 463–469.

Savitzky, Abraham and Marcel JE Golay (1964). “Smoothing and differentiation of
data by simplified least squares procedures.” In: Analytical Chemistry 36.8, pp. 1627–
1639.

Schuldt, C., I. Laptev, and B. Caputo (2004). “Recognizing human actions: a local
SVM approach”. In: IEEE International Conference on Pattern Recognition (ICPR).
Vol. 3, pp. 32–36. DOI: 10.1109/ICPR.2004.1334462.

Schuster, Mike and Kuldip K. Paliwal (1997). “Bidirectional recurrent neural net-
works”. In: IEEE Transactions on Signal Processing 45, pp. 2673–2681.

Sermanet, P. and Y. LeCun (2011). “Traffic sign recognition with multi-scale convo-
lutional networks”. In: International Joint Conference on Neural Networks (IJCNN),
pp. 2809–2813.

Sermanet, Pierre et al. (2013). “Pedestrian detection with unsupervised multi-stage
feature learning”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3626–3633.

Shahroudy, Amir et al. (2016). “NTU RGB+D: A large scale dataset for 3D human
activity analysis”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1010–1019.

Shahroudy, Amir et al. (2017). “Deep multimodal feature analysis for action recog-
nition in RGB+ D videos”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 40.5, pp. 1045–1058.

Shao, Jing et al. (2015). “Deeply learned attributes for crowded scene understand-
ing”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4657–
4666.

Sharma, Shikhar, Ryan Kiros, and Ruslan Salakhutdinov (2015). “Action recognition
using visual attention”. In: arXiv preprint arXiv:1511.04119.

Shi, Yemin et al. (2017). “Learning long-term dependencies for action recognition
with a biologically-inspired deep network”. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 716–725.

Shi, Zhiyuan and Tae-Kyun Kim (2017). “Learning and refining of privileged information-
based RNNs for action recognition from depth sequences”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4684–4693.

Shotton, Jamie et al. (2011). “Real-time human pose recognition in parts from sin-
gle depth images”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), p. 3.

Shuang, L., S. Xiao, and W. Yichen (2018). “Compositional human pose regression”.
In: Computer Vision and Image Understanding 176-177, pp. 1 –8.

Si, Chenyang et al. (2019). “An attention enhanced graph convolutional LSTM net-
work for skeleton-based action recognition”. In: arXiv preprint arXiv:1902.09130.

Sigala, Rodrigo et al. (2005). “Learning features of intermediate complexity for the
recognition of biological motion”. In: International Conference on Artificial Neural
Networks (ICANN), pp. 241–246.

Sigurdsson, Gunnar A et al. (2016). “Hollywood in homes: Crowdsourcing data col-
lection for activity understanding”. In: European Conference on Computer Vision
(ECCV). Springer, pp. 510–526.

http://dx.doi.org/10.1109/ICPR.2004.1334462


BIBLIOGRAPHY 147

Simonyan, Karen and Andrew Zisserman (2014a). “Two-stream convolutional net-
works for action recognition in videos”. In: Advances in Neural Information Pro-
cessing Systems (NIPS).

— (2014b). “Very deep convolutional networks for large-scale image recognition”.
In: arXiv preprint arXiv:1409.1556.

Singh, Amarjot, Devendra Patil, and SN Omkar (2018). “Eye in the sky: Real-time
drone surveillance system (DSS) for violent individuals identification using scat-
terNet hybrid deep learning network”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 1629–1637.

Singh, Bharat et al. (2016). “A multi-stream bi-directional recurrent neural network
for fine-grained action detection”. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1961–1970.

Singh, Sanchit, Sergio A Velastin, and Hossein Ragheb (2010). “Muhavi: A multicam-
era human action video dataset for the evaluation of action recognition meth-
ods”. In: IEEE International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS). IEEE, pp. 48–55.

Singh, Suriya, Chetan Arora, and CV Jawahar (2016). “First person action recogni-
tion using deep learned descriptors”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2620–2628.

Sminchisescu, C. (2006). “3D human motion analysis in monocular video techniques
and challenges”. In: IEEE International Conference on Video and Signal Based Surveil-
lance (ICVSBS), pp. 76–76.

Song, Sijie et al. (2017). “An end-to-end spatio-temporal attention model for human
action recognition from skeleton data”. In: Thirty-first AAAI conference on Artificial
Intelligence (AAAI), pp. 4263–4270.

Sonwalkar, Poonam et al. (2015). “Hand gesture recognition for real time human
machine interaction system”. In: International Journal of Engineering Trends and
Technology (IJETT) 19.5.

Soomro, Khurram, Amir Roshan Zamir, and Mubarak Shah (2012). “UCF101: A dataset
of 101 human actions classes from videos in the wild”. In: arXiv preprint
arXiv:1212.0402.

Srivastava, Nitish, Elman Mansimov, and Ruslan Salakhudinov (2015). “Unsuper-
vised learning of video representations using LSTMs”. In: International Conference
on Machine Learning (ICML), pp. 843–852.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks
from overfitting”. In: Journal of Machine Learning Research 15, pp. 1929–1958.

Subetha, T. and S. Chitrakala (2016). “A survey on human activity recognition from
videos”. In: International Conference on Information Communication and Embedded
Systems (ICICES), pp. 1–7. DOI: 10.1109/ICICES.2016.7518920.

Sun, Lin et al. (2015). “Human action recognition using factorized spatio-temporal
convolutional networks”. In: IEEE International Conference on Computer Vision (ICCV),
pp. 4597–4605.

Sun, Lin et al. (2017). “Lattice long short-term memory for human action recogni-
tion”. In: pp. 2147–2156.

Sung, Jaeyong et al. (2011). “Human activity detection from RGB-D images”. In: Plan,
Activity, and Intent Recognition 64.

Szegedy, C. et al. (2015a). “Going deeper with convolutions”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9.

Szegedy, Christian et al. (2015b). “Going deeper with convolutions”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9.

http://dx.doi.org/10.1109/ICICES.2016.7518920


148 BIBLIOGRAPHY

Szegedy, Christian et al. (2016). “Rethinking the Inception architecture for computer
vision”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2818–2826.

Szegedy, Christian et al. (2017). “Inception-v4, Inception-ResNet and the impact of
residual connections on learning”. In: Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence. AAAI’17. San Francisco, California, USA: AAAI
Press, pp. 4278–4284. URL: http://dl.acm.org/citation.cfm?id=3298023.
3298188.

Tanfous, Amor Ben, Hassen Drira, and Boulbaba Ben Amor (2018). “Coding Kendall’s
shape trajectories for 3D action recognition”. In: IEEE Computer Vision and Pattern
Recognition (CVPR), pp. 2840–2849.

Tang, Huixuan (2008). “A comparative evaluation of deep belief nets in semi-supervised
learning”. In: Department of Computer Science University of Toronto.

Tas, Yusuf and Piotr Koniusz (2018). “CNN-based action recognition and supervised
domain adaptation on 3D body skeletons via kernel feature maps”. In: British Ma-
chine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle, UK,
September 3-6, 2018. BMVA Press, p. 158. URL: http://bmvc2018.org/contents/
papers/0753.pdf.

Taylor, Graham W., Geoffrey E Hinton, and Sam T. Roweis (2007). “Modeling hu-
man motion using binary latent variables”. In: Advances in Neural Information
Processing Systems 19. Ed. by B. Schölkopf, J. C. Platt, and T. Hoffman. MIT Press,
pp. 1345–1352.

Tekin, B. et al. (2016). “Direct prediction of 3D body poses from motion compen-
sated sequences”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 991–1000.

Telgarsky, Matus (2016). “Benefits of depth in neural networks”. In: arXiv preprint
arXiv:1602.04485.

The Local (2015). SNCF increases fines for ticket dodgers. https://bit.ly/2mYaJwW.
Published 20 February 2015. Accessed 10 July 2018.

Theodorakopoulos, Ilias et al. (2014). “Pose-based human action recognition via sparse
representation in dissimilarity space”. In: Journal of Visual Communication and Im-
age Representation 25.1, pp. 12–23.

Tian, Yicong, S. Rahul, and Mubarak Shah (2013). “Spatiotemporal deformable part
models for action detection”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2642–2649.

Tompson, Jonathan et al. (2014). “Real-time continuous pose recovery of human
hands using convolutional networks”. In: ACM Transactions on Graphics (TOG)
33, p. 169.

Tran, An and Loong-Fah Cheong (2017). “Two-stream flow-guided convolutional
attention networks for action recognition”. In: IEEE International Conference on
Computer Vision (ICCV), pp. 3110–3119.

Tran, Du et al. (2015). “Learning spatiotemporal features with 3D convolutional net-
works”. In: IEEE International Conference on Computer Vision (ICCV), pp. 4489–
4497.

Turaga, P. et al. (2008). “Machine recognition of human activities: A survey”. In: IEEE
Transactions on Circuits and Systems for Video Technology (TCSVT) 18, pp. 1473–
1488.

Ullah, Ihsan and Alfredo Petrosino (2015). “A strict pyramidal deep neural network
for action recognition”. In: International Conference on Image Analysis and Process-
ing (ICIP), pp. 236–245.

http://dl.acm.org/citation.cfm?id=3298023.3298188
http://dl.acm.org/citation.cfm?id=3298023.3298188
http://bmvc2018.org/contents/papers/0753.pdf
http://bmvc2018.org/contents/papers/0753.pdf
https://bit.ly/2mYaJwW


BIBLIOGRAPHY 149

— (2016). “Spatiotemporal features learning with 3DPyraNet”. In: International Con-
ference on Advanced Concepts for Intelligent Vision Systems, pp. 638–647.

Valera, M. and S. A. Velastin (2005). “Intelligent distributed surveillance systems: a
review”. In: IEE Proceedings - Vision, Image and Signal Processing 152.2, pp. 192–
204. ISSN: 1350-245X. DOI: 10.1049/ip-vis:20041147.

Valstar, Michel F et al. (2011). “The first facial expression recognition and analysis
challenge”. In: IEEE International Conference on Automatic Face and Gesture Recog-
nition (FG), pp. 921–926.

Varol, G., I. Laptev, and C. Schmid (2018). “Long-term temporal convolutions for ac-
tion recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
40.6, pp. 1510–1517. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2017.2712608.

Vedaldi, Andrea and Karel Lenc (2015). “Matconvnet: Convolutional neural net-
works for matlab”. In: Proceedings of the 23rd ACM international conference on Mul-
timedia. ACM, pp. 689–692.

Veeriah, Vivek, Naifan Zhuang, and Guo-Jun Qi (2015). “Differential recurrent neu-
ral networks for action recognition”. In: IEEE International Conference on Computer
Vision (ICCV), pp. 4041–4049.

Vemulapalli, Raviteja, Felipe Arrate, and Rama Chellappa (2014). “Human action
recognition by representing 3D skeletons as points in a lie group”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 588–595.

Vieira, A. et al. (2014). “On the improvement of human action recognition from depth
map sequences using Space-Time Occupancy Patterns”. In: Pattern Recognition
Letters (PRL) 36, pp. 221–227.

Vieira, Antonio W et al. (2012). “Stop: Space-time occupancy patterns for 3D ac-
tion recognition from depth map sequences”. In: Iberoamerican Congress on Pattern
Recognition (ICPR), pp. 252–259.

Vincent, Pascal et al. (2008). “Extracting and composing robust features with denois-
ing autoencoders”. In: Proceedings of the 25th International Conference on Machine
Learning (ICML). ICML’08. Helsinki, Finland: ACM, pp. 1096–1103. ISBN: 978-1-
60558-205-4. DOI: 10.1145/1390156.1390294. URL: http://doi.acm.org/10.
1145/1390156.1390294.

Vondrick, Carl, Hamed Pirsiavash, and Antonio Torralba (2016). “Generating videos
with scene dynamics”. In: Advances In Neural Information Processing Systems (NIPS),
pp. 613–621.

Vrigkas, Michalis, Christophoros Nikou, and Ioannis A Kakadiaris (2015). “A review
of human activity recognition methods”. In: Frontiers in Robotics and AI 2, p. 28.

Wang, H. et al. (2011). “Action recognition by dense trajectories”. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176.

Wang, Heng and Cordelia Schmid (2013). “Action recognition with improved tra-
jectories”. In: IEEE International Conference on Computer Vision (ICCV), pp. 3551–
3558.

Wang, Hongsong and Liang Wang (2017). “Modeling temporal dynamics and spatial
configurations of actions using two-stream recurrent neural networks”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 499–508.

Wang, J. et al. (2012). “Mining actionlet ensemble for action recognition with depth
cameras”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1290–1297.

Wang, J. et al. (2014). “Cross-view action modeling, learning, and recognition”. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2649–
2656. DOI: 10.1109/CVPR.2014.339.

http://dx.doi.org/10.1049/ip-vis:20041147
http://dx.doi.org/10.1109/TPAMI.2017.2712608
http://dx.doi.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
http://dx.doi.org/10.1109/CVPR.2014.339


150 BIBLIOGRAPHY

Wang, Jiang, Zicheng Liu, and Ying Wu (2014). Human action recognition with depth
cameras. Springer Briefs in Computer Science.

Wang, Keze et al. (2014). “3D human activity recognition with reconfigurable convo-
lutional neural networks”. In: Proceedings of the ACM International Conference on
Multimedia (ACM Multimedia), pp. 97–106.

Wang, Liang, Weiming Hu, and Tieniu Tan (2003). “Recent developments in human
motion analysis”. In: Pattern Recognition 36, pp. 585–601.

Wang, Lijun et al. (2015a). “Visual tracking with fully convolutional networks”. In:
IEEE International Conference on Computer Vision (ICCV), pp. 3119–3127.

Wang, Limin, Yu Qiao, and Xiaoou Tang (2015). “Action recognition with trajectory-
pooled deep-convolutional descriptors”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4305–4314.

Wang, Limin et al. (2015b). “CUHK&SIAT submission for THUMOS’15 action recog-
nition challenge”. In: THUMOS’15 Action Recognition Challenge, pp. 1–3.

Wang, Limin et al. (2015c). “Towards good practices for very deep two-stream con-
vnets”. In: arXiv preprint arXiv:1507.02159.

Wang, Limin et al. (2016a). “Temporal segment networks: towards good practices
for deep action recognition”. In: European Conference on Computer Vision (ECCV),
pp. 20–36.

Wang, Limin et al. (2017a). “Untrimmednets for weakly supervised action recogni-
tion and detection”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4325–4334.

Wang, M., B. Ni, and X. Yang (2017). “Recurrent modeling of interaction context for
collective activity recognition”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3048–3056.

Wang, P. et al. (2016b). “Graph based skeleton motion representation and similarity
measurement for action recognition”. In: European Conference on Computer Vision
(ECCV), pp. 370–385.

Wang, Pichao et al. (2015d). “ConvNets-based action recognition from depth maps
through virtual cameras and pseudocoloring”. In: Proceedings of the ACM Inter-
national Conference on Multimedia (ACM), pp. 1119–1122.

Wang, Pichao et al. (2015e). “Deep convolutional neural networks for action recog-
nition using depth map sequences”. In: arXiv preprint arXiv:1501.04686.

Wang, Pichao et al. (2016c). “Action recognition based on joint trajectory maps using
convolutional neural networks”. In: ACM Multimedia, pp. 102–106.

Wang, Pichao et al. (2017b). “Scene flow to action map: A new representation for
RGB-D based action recognition with convolutional neural networks”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 595–604.

Wang, Xiaolong, Ali Farhadi, and Abhinav Gupta (2016). “Actions transforma-
tions”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2658–2667.

Wang, Yifan et al. (2016d). “Two-stream SR-CNNs for action recognition in videos”.
In: vol. 108. British Machine Vision Conference (BMVC), pp. 1–12.

Wang, Yilin et al. (2016e). “Hierarchical attention network for action recognition in
videos”. In: arXiv preprint arXiv:1607.06416.

Wanqing, Li, Zhang Zhengyou, and Liu Zicheng (2010). “Action recognition based
on a bag of 3D points”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 9–14.

Wei Niu et al. (2004). “Human activity detection and recognition for video surveil-
lance”. In: IEEE International Conference on Multimedia and Expo (ICME). Vol. 1,
pp. 719–722. DOI: 10.1109/ICME.2004.1394293.

http://dx.doi.org/10.1109/ICME.2004.1394293


BIBLIOGRAPHY 151

Weinland, Daniel, Remi Ronfard, and Edmond Boyer (2006). “Free viewpoint action
recognition using motion history volumes”. In: Computer Vision and Image Under-
standing 104, pp. 249–257.

Weinland, Daniel, Rémi Ronfard, and Edmond Boyer (2011). “A survey of vision-
based methods for action representation, segmentation and recognition”. In: Com-
puter Vision and Image Understanding 115, pp. 224–241.

Weiyao Lin et al. (2008). “Human activity recognition for video surveillance”. In:
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2737–2740. DOI:
10.1109/ISCAS.2008.4542023.

Weng, J., C. Weng, and J. Yuan (2017). “Spatio-temporal naive-bayes nearest-neighbor
(ST-NBNN) for skeleton-based action recognition”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 4171–4180.

Weng, J. et al. (2018). “Discriminative spatio-temporal pattern discovery for 3D ac-
tion recognition”. In: IEEE Transactions on Circuits and Systems for Video Technology,
pp. 1–1.

Wolf, Christian et al. (2014). “Evaluation of video activity localizations integrating
quality and quantity measurements”. In: Computer Vision and Image Understand-
ing 127, pp. 14–30.

Wu, Daoxi et al. (2014). “An adaptive stacked denoising auto-encoder architecture
for human action recognition”. In: Applied Mechanics & Materials 631, pp. 403–
409.

Wu, Jialin et al. (2016). “Action recognition with joint attention on multi-level deep
features”. In: arXiv preprint arXiv:1607.02556.

Xia, L., C. Chen, and JK Aggarwal (2012a). “View invariant human action recogni-
tion using histograms of 3D joints”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 20–27.

Xia, Lu, Chia-Chih Chen, and Jake K. Aggarwal (2012b). “View invariant human
action recognition using histograms of 3D joints”. In: IEEE Conference on Computer
Vision and Pattern Recognitio (CVPR), pp. 20–27.

Xie, Chunyu et al. (2018). “Memory attention networks for skeleton-based action
recognition”. In: arXiv preprint arXiv:1804.08254.

Xie, Lidong et al. (2014). “A pyramidal deep learning architecture for human ac-
tion recognition”. In: International Journal of Modelling, Identification and Control
21, pp. 139–146.

Xingyi, Z. et al. (2016). “Deep kinematic pose regression”. In: European Conference on
Computer Vision (ECCV), pp. 186–201.

Xiong, Yuanjun et al. (2015). “Recognize complex events from static images by fusing
deep channels”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1600–1609.

Xiong, Yuanjun et al. (2016). “CUHK & ETHZ & SIAT submission to ActivityNet
challenge 2016”. In: arXiv preprint arXiv:1608.00797.

Xu, Haining et al. (2015a). “Spatio-temporal pyramid model based on depth maps
for action recognition”. In: IEEE International Workshop on Multimedia Signal Pro-
cessing (MMSP), pp. 1–6. DOI: 10.1109/MMSP.2015.7340806.

Xu, Kelvin et al. (2015b). “Show, attend and tell: Neural image caption generation
with visual attention”. In: International Conference on Machine Learning (ICML),
pp. 2048–2057.

Xu, Tiantian et al. (2016). “Dual many-to-one-encoder-based transfer learning for
cross-dataset human action recognition”. In: Image and Vision Computing 55, pp. 127–
137.

http://dx.doi.org/10.1109/ISCAS.2008.4542023
http://dx.doi.org/10.1109/MMSP.2015.7340806


152 BIBLIOGRAPHY

Yang, J., K. Yu, and T. Huang (2010). “Supervised translation-invariant sparse cod-
ing”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3517–
3524.

Yang, Jianchao et al. (2009). “Linear spatial pyramid matching using sparse coding
for image classification”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), p. 6.

Yang, Xiaodong and YingLi Tian (2014). “Super normal vector for activity recogni-
tion using depth sequences”. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), pp. 804–811.

Yang, Yang, Imran Saleemi, and Mubarak Shah (2013). “Discovering motion prim-
itives for unsupervised grouping and one-shot learning of human actions, ges-
tures, and expressions”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence (TPAMI) 35, pp. 1635–1648.

Yao, B. and L. Fei-Fei (2010). “Modeling mutual context of object and human pose in
human-object interaction activities”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 17–24.

Ye, Mao and Ruigang Yang (2014). “Real-time simultaneous pose and shape estima-
tion for articulated objects using a single depth camera”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2345–2352.

Yeung, Serena et al. (2016). “End-to-end learning of action detection from frame
glimpses in videos”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2678–2687.

Yu, Kai, Yuanqing Lin, and John Lafferty (2011). “Learning image representations
from the pixel level via hierarchical sparse coding”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1713–1720.

Yun, K. et al. (2012a). “Two-person interaction detection using body-pose features
and multiple instance learning”. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 28–35. DOI: 10.1109/CVPRW.2012.6239234.

— (2012b). “Two-person interaction detection using body-pose features and multi-
ple instance learning”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 28–35.

Yurii, N. (1983). “A method for solving a convex programming problem with con-
vergence rate O(1/K2)”. In: Soviet Mathematics Doklady, pp. 372–367.

Zang, Jinliang et al. (2018). “Attention-based temporal weighted convolutional neu-
ral network for action recognition”. In: International Conference on Artificial Intelli-
gence Applications and Innovations (IFIP), pp. 97–108.

Zeiler, Matthew D and Rob Fergus (2014). “Visualizing and understanding convo-
lutional networks”. In: European Conference on Computer Vision (ECCV), pp. 818–
833.

Zhang, H. et al. (2014). “Real-time action recognition based on a modified deep belief
network model”. In: IEEE International Conference on Information and Automation
(ICIA), pp. 225–228.

Zhang, Jing et al. (2016). “RGB-D-based action recognition datasets: A survey”. In:
Pattern Recognition 60, pp. 86–105.

Zhang, P. et al. (2019). “View adaptive neural networks for high performance skeleton-
based human action recognition”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 1, pp. 1–1.

Zhang, Songyang, Xiaoming Liu, and Jun Xiao (2017). “On geometric features for
skeleton-based action recognition using multilayer lstm networks”. In: IEEE Win-
ter Conference on Applications of Computer Vision (WACV), pp. 148–157.

http://dx.doi.org/10.1109/CVPRW.2012.6239234


BIBLIOGRAPHY 153

Zhang, Zhengyou (2012). “Microsoft Kinect sensor and its effect”. In: IEEE Multime-
dia 19, pp. 4–10.

Zhao, R., H. Ali, and P. van der Smagt (2017). “Two-stream RNN/CNN for action
recognition in 3D videos”. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4260–4267. DOI: 10.1109/IROS.2017.8206288.

Zhou, X. et al. (2016). “Sparseness meets deepness: 3D human pose estimation from
monocular video”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4966–4975.

Zhu, Guangming et al. (2016a). “An online continuous human action recognition
algorithm based on the Kinect sensor”. In: Sensors 16.2, p. 161.

Zhu, H., R. Vial, and S. Lu (2017). “TORNADO: A spatio-temporal convolutional
regression network for video action proposal”. In: IEEE International Conference
on Computer Vision (ICCV), pp. 5813–5821.

Zhu, Wentao et al. (2016b). “Co-occurrence feature learning for skeleton based action
recognition using regularized deep LSTM networks”. In: Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI
Press, pp. 3697–3703. URL: http://dl.acm.org/citation.cfm?id=3016387.
3016423.

— (2016c). “Co-occurrence feature learning for skeleton based action recognition us-
ing regularized deep LSTM networks”. In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, pp. 3697–
3703. URL: http://dl.acm.org/citation.cfm?id=3016387.3016423.

Zhu, Yan et al. (2010). “Sparse coding on local spatial-temporal volumes for human
action recognition”. In: Asian Conference on Computer Vision (ACCV), pp. 660–671.

Zouba, Nadia et al. (2009). “Assessing computer systems for monitoring elderly peo-
ple living at home”. In: Proceedings of the World Congress of Gerontology and Geri-
atrics (IAGG), pp. 5–9.

http://dx.doi.org/10.1109/IROS.2017.8206288
http://dl.acm.org/citation.cfm?id=3016387.3016423
http://dl.acm.org/citation.cfm?id=3016387.3016423
http://dl.acm.org/citation.cfm?id=3016387.3016423

	Abstract
	Acknowledgements
	Introduction
	Human action recognition in videos
	Motivation
	Research challenges
	Problem statement and scope of study
	Main contributions
	Structure of the thesis

	Overview of Deep Learning
	Deep Learning: A summary
	Convolutional Neural Networks (CNNs)
	Recurrent Neural Networks with Long Short-Term Memory units (RNN-LSTM)
	Deep Belief Networks (DBNs)
	Stacked Denoising Autoencoders (SDAs)
	Generative Adversarial Networks (GANs)
	Conclusion

	Deep Learning for Human Action Recognition: State-of-the-Art
	Related reviews and public datasets
	Previous reviews
	Benchmark datasets for human action recognition in videos

	Deep learning approaches for video-based human action recognition
	Deep learning for human action recognition: Challenges 
	Human action recognition based on CNNs
	Human action recognition based on RNNs
	Fusion of CNNs with LSTM units for human action recognition
	Human action recognition based on DBNs
	Human action recognition based on SDAs
	GANs for human action recognition
	Other deep architectures for human action recognition

	Discussion
	Current state of deep learning architectures for action recognition
	A quantitative analysis on HMDB-51, UCF-101 and NTU+RGB-D
	The future of deep learning for video-based human action recognition

	Conclusion

	Proposed Deep Learning-based Approach for 3D Human Action Recognition from Skeletal Data Provided by RGB-D Sensors
	Learning and recognizing 3D human actions from skeleton movements with Deep Residual Neural Networks
	Introduction
	Related work
	Proposed method
	Experiments
	Experimental results and analysis
	Conclusion

	SPMF: A new skeleton-based representation for 3D action recognition with Inception Residual Networks
	Introduction
	Proposed method
	Experiments
	Experimental results and analysis
	Processing time: training and prediction
	Conclusion

	Enhanced-SPMF: An extended representation of the SPMF for 3D human action recognition with Deep Convolutional Neural Networks
	Introduction
	Proposed method
	Experiments
	Experimental results and analysis
	Conclusion

	CEMEST dataset
	Introduction to CEMEST dataset
	Experiments on CEMEST
	Experimental results
	Conclusion


	Deep Learning for 3D Pose Estimation and Action Recognition
	Introduction
	Related work
	3D human pose estimation from a single RGB camera
	3D pose-based action recognition from RGB sensors

	Proposed method
	Problem definition
	Deep learning model for 3D human pose estimation from RGB images
	Deep learning framework for 3D pose-based action recognition

	Experiments
	Datasets and settings
	Implementation details
	Experimental results and comparison
	Computational efficiency evaluation

	Conclusion

	Conclusions and Perspectives
	Discussion
	Limitations
	Future work
	Recurrent Neural Networks with Long Short-Term Memory units
	Temporal Convolutional Network
	Multi-Stream Deep Neural Networks
	Attention Temporal Networks


	Datasets
	Network Architectures
	Savitzky-Golay Smoothing Filter
	Degradation phenomenon in training very deep neural networks
	Version française résumée
	Curriculum Vitæ
	Bibliography

